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A B S T R A C T

Cell localization constitutes a fundamental research domain within the realm of pathology image analysis, with
its core objective being the precise identification of cell spatial coordinates. The task has always involved the
challenge of large color variations among cells, uneven distribution, and overlapping borders. Furthermore, in
realistic cell localization scenarios, the existing state-of-the-art methods suffer from high computational costs
and slow inference times, which severely reduce the efficiency of computer-assisted. To tackle the above issues,
a lightweight and efficient cell localization model named Lite-UNet is proposed. Specifically, the Lite-UNet
encompasses three pivotal modules. Firstly, we introduce a gradient aggregation module grounded in difference
convolution. This module effectively mitigates the challenge posed by extensive color variations among cells
by adeptly leveraging gradient information. Secondly, we propose an efficient plug-and-play graph correlation
attention module, which optimizes the feature representation capabilities by encoding higher-order feature
associations. Finally, we design a lightweight Ghost_CBAM module that alleviates the difficulty of uneven
cell distribution while forming the base module of the Lite-UNet. Extensive experiments show that our Lite-
UNet is capable of locating cells in images quickly and accurately, thus further improving the efficiency of
computer-assisted medicine.
1. Introduction

The observation of cells is a crucial resource for human explo-
ration of the microscopic biological world. Cell analysis has long been
an essential field and a challenging research topic in medical image
analysis. In this field, the purpose of the cell localization task is to
precisely locate the specific position of each cell center in the image.
This task plays an integral role in a host of medical scenarios, and
the localization effect will have a direct influence on the subsequent
image analysis (Chen et al., 2022; Asha et al., 2023). Manually locating
cells in images is tedious, time-consuming, and expensive, for which
reason researchers have been working to develop algorithms that can
automatically locate them. However, the large color variations among
cells, uneven distribution, and overlapping borders in the cell images
make this work extremely challenging.

Traditional cell localization methods (Suryani et al., 2015; Kainz
et al., 2015; Li et al., 2021) use image processing algorithms such as
thresholding, Canny edge detection, and color recognition filtering to
identify cells. However, these methods do not perform well in the case
of overlapping cells or large color variations among cells. With the de-
velopment of artificial intelligence techniques, especially the popularity
of deep learning techniques, methods to directly predict the location
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and number of cells using deep learning techniques have shown encour-
aging results. Currently, deep learning-based cell localization methods
are rapidly emerging as new adjuncts to diagnosis and treatment. Many
convolutional neural network (CNN)-based methods (Xie et al., 2018a;
Li et al., 2023; Dijkstra et al., 2018) achieve excellent cell localization
performance owing to the powerful nonlinear fitting ability of CNN.

The current paradigm commonly used in the field of cell localization
is to regress the location map and then obtain the exact location of the
cell. Specifically, the cell images are first mapped to the corresponding
location maps using a CNN-based approach, and then the location
maps are post-processed to obtain information on the location and
number of cells. The location maps mentioned here refer to maps
that can be used for cell localization, such as probability maps (Sir-
inukunwattana et al., 2016), density maps (Huang et al., 2020; Tofighi
et al., 2019), directional field maps (Chen et al., 2021a), pseudo scale
instance map (Zhang et al., 2023), and exponential distance transform
maps (Li et al., 2023a). For example, (Xie et al., 2018b) use a fully
convolutional neural network to regress the cell density map. Since the
network is a fully convolutional design, prediction can be performed
on a random size input image, thus enabling end-to-end training for
efficiency. Notably, the key to cell localization is the quality of the
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Fig. 1. The main difficulty in cell localization: the large color variations among cells.
Left: original cell image with large color variations among cells; middle: location map
generated from the original cell image based on different convolution models; right:
visualization results of the location map.

generated location map, and a location map that accurately reflects the
cell location can significantly improve the localization results.

According to our observations, location maps often have trouble
accurately reflecting cell location information. The core reason is that
the color of the cells varies too much, resulting in too large a gap
in the corresponding responses of the cells in the location maps, and
eventually the light-colored cells are often ignored. As shown in Fig. 1,
when vanilla convolution-based models predict cell images with large
color variations, the light-colored cells in the images respond extremely
weakly in the generated location maps, resulting in existing localization
models tending to ignore the light-colored cells, which greatly reduces
the localization performance of the models. It is worth mentioning
that Huang et al. (2020) annotate and predict lighter-colored and
dark-colored cells separately, cleverly avoiding the difficulty of large
color variations. However, this strategy introduces more cumbersome
operations and more expensive manual annotation costs, which is not
conducive to further expansion of the application. Ideally, all colors of
cells should correspond to the same degree of response in the location
map. Cells with large color variations correspond to large differences
in pixel values, yet ultimately all cells need to be mapped to the
same response in the location map, thus creating a contradiction. In
this regard, we expect the model to reduce the color gap between
cells, i.e., to reduce the gap between the absolute values of cell pixels.
Considering that difference convolution has a similar effect, which
mitigates the large gap in cell color to some extent by performing local
difference computation on the cell pixels, thus capturing the gradient
information between neighboring pixels. To this end, we propose dif-
ference convolution-based gradient aggregation module to alleviate this
problem by enhancing the gradient information among pixels.

The current field of cell localization also suffers from uneven cell
distribution and high model computational cost. For the tricky problem
of uneven cell distribution, Guo et al. (2021) use the self-attention
module to capture the interconnections among features. However, the
process of calculating the association weights of global features of
an image by the self-attention module is expensive, and they use the
more costly U-Net (Ronneberger et al., 2015) as the backbone, which
further increases the computational cost of the model. The high number
of parameters and computational effort of the model limits its appli-
cation, especially in the light of the increasing popularity of mobile
applications and edge computing deployments. In addition, too slow
inference speed reduces the enjoyment and productivity of healthcare
professionals. To solve these issues, a new Ghost_CBAM module is
proposed that combines the CBAM attention module, which has an
exceedingly small computational cost, with the Ghost module. This
module effectively implements model compression while alleviating the
2

problem of uneven cell distribution. In this paper, a lightweight, high-
performance cell localization model Lite-UNet is built based on this
module.

Given the powerful modeling capability of CNN, the above CNN-
based models have been capable to achieve strong cell localization
performance. However, the CNN suffers from two problems: first, it uni-
formly transform local features in images by convolutional operations,
ignoring the correlation among features. Secondly, the receptive fields
in CNN are restricted to local areas, which are difficult to adapt to the
complex topology of the scene. Therefore, some researchers (Defferrard
et al., 2016; Atwood and Towsley, 2016; Welling and Kipf, 2016; Li
et al., 2023b) propose graph convolutional network (GCN) to model
the complex associations in the scenes. Compared with traditional CNN
methods, GCN can encode the graph structure of the input data and
continuously learn and aggregate relevant information from a full-
graph perspective to better characterize the features. For example,
the uneven distribution of cells and the variety of cell shapes are
incompatible with the receptive fields of the CNN, yet the topology
of graph convolutional networks can better fit this non-uniform distri-
bution. Accordingly, this paper proposes a graph correlation attention
module that can improve the performance of cell localization by en-
coding higher-order association information among features to guide
the distribution of features.

In summary, the contributions of this paper are summarized as
follows.

∙ In this paper, we propose a lightweight and efficient cell localiza-
tion model that achieves competitive performance at a very low cost
and can improve the efficiency of computerized medical assistance.

∙ A novel gradient aggregation module based on difference convo-
lution is proposed to effectively alleviate the problem of large color
variations among cells.

∙ An attention-based Ghost_CBAM module is designed to effec-
tively alleviate the problem of uneven cell distribution while achieving
model compression, and a lightweight high-performance cell localiza-
tion model Lite-UNet is built based on this module.

∙ A graph correlation attention module is proposed, which encodes
higher-order associations among features for better representation.

2. Related works

In this section, we briefly describe the current state of research on
CNN-based cell localization and counting tasks, which can be broadly
classified into detection-based localization methods and map-based
regression methods.

2.1. Detection-based localization methods

This method aims to determine the specific location of each cell
in the image as well as the overall number by the paradigm of
detection. For fast and efficient detection of blood cells in micro-
scopic images, Shakarami et al. (2021) propose a detector based on
YOLOV3 (Redmon and Farhadi, 2018). They expand the sensory do-
main by stacking the null convolution and make the model lighter by
using depth-separable convolution and finally achieve better detection
accuracy on the BCCD dataset. Alam and Islam (2019) also design
a YOLO-based cell detector for automatic identification and counting
of red blood cells, blood cells, and platelets. In addition, Kutlu et al.
(2020) propose a deep learning and migration learning-based approach
for automatic leukocyte detection from smear images.

The detection-based cell localization methods have good detection
performance in the case of sparse cells, but as the cell density increases,
the problem of intercellular occlusion becomes more severe, leading
to a rapid decline in the performance of these detection models. As a
result, it is now common for researchers to use a map-based regression
paradigm to calculate and localize cells.
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2.2. Map-based regression methods

To solve the problem of mutual occlusion caused by dense cell den-
sity, some researchers have proposed regression localization and count-
ing methods based on probability maps, density maps, directional field
maps, or exponential distance transform maps. The researchers (Tofighi
et al., 2019; Huang et al., 2020; Li et al., 2021) use CNN models
to predict the probability/density maps corresponding to the images,
and then consider the local maxima in them as the centroids of the
cells. Tofighi et al. (2019) propose a spatially constrained convolutional
neural network for cell center detection. They predict the probability of
a patch in each image becoming the center of the cell nucleus, and then
aggregated the above results to form a probability map to locate the
specific location of the cell. Huang et al. (2020) regress the cell density
map by adding a transposed convolutional layer on top of CSRNet (Li
et al., 2018). Falk et al. (2019) implement U-Net-based cell localization,
and provide an ImageJ plugin that enables non-machine learners to
analyze their data. Guo et al. (2021) establish a unified 2D and 3D
cell counting framework based on the U-Net segmentation network and
self-attention mechanism. Similarly, Mao et al. (2021) decompose the
cell localization task into two subtasks to be processed: first mapping
the raw pathology image to a binary mask, and then mapping the
binary mask to a density mask in the second subtask, resulting in
improved performance. However, the above-mentioned density map
characterization methods are difficult to accurately express the cell
localization information, so researchers further propose the directed
field map (Chen et al., 2021a). The directional field map defines a
directional field at each pixel of a cell region such that adjacent pixels
are oriented in opposite directions, but the directional fields of the same
cell region all point to the same center. However, the direction field
map is susceptible to mutual overlap between cells. Therefore, Li et al.
(2023a) propose an exponential distance strategy to optimize the cell
localization map so that the cells are independent of each other, which
is a promising solution to the problem of cell overlap. In addition to
the above work, in order to further extend the cell localization task
while adding more comparison methods, we also introduce a number
of popular models in the field of image analysis, including Attention U-
Net (Oktay et al., 2018), HRNet (Wang et al., 2020), TransUNet (Chen
et al., 2021b), MPViT (Lee et al., 2022), Swin Transformer (Liu et al.,
2021), and ConvNeXt (Liu et al., 2022). Among them, Attention U-
Net, HRNet, and TransUNet can be directly used for localization tasks,
while MPViT, Swin Transformer, and ConvNeXt need to follow HRNet’s
stacking approach to be used for localization tasks, i.e., stacking feature
maps at multiple stages.

The above works have largely contributed to the development and
application of the field of cell localization and counting. However, the
above work does not take into account the computational cost of the
models, and they tend to use computationally expensive models for
localization and counting, and thus have high parameter counts, large
computational effort, and very long inference times, each of which
limits their application in real-world scenarios.

3. The model

The lightweight and efficient Lite-UNet model for cell localization
proposed in this paper is shown in Fig. 2, which illustrates the dimen-
sional changes of the feature maps at each stage. The input to the model
is the cell image and the output is the corresponding cell location map.
The model consists of 3 main modules: first, a Gradient Aggregation
(GA) module based on difference convolution, which serves as a front-
end to the encoding part to fully extract and aggregate the gradient and
semantic information among features; second, to alleviate the problem
of uneven cell distribution while obtaining a lightweight and high-
performance model, we replace the convolution module in the network
with the Ghost_CBAM module; finally, the Graph Correlation Atten-
tion (GCA) module that encodes the higher-order association relations
among features is placed at the semantic information-rich end of the
3

encoding. We will explain them separately in the following.
3.1. Gradient aggregation module

As shown in Fig. 1, the main challenge faced in the field of cell
analysis is the large color variations among cells, which causes mod-
els to often ignore light-colored cells in the images. Specifically, the
local values corresponding to cells of different colors are similar in
the location map, so it is difficult for the model to learn a uniform
mapping representations. From the localization results, the model tends
to ignore the lighter-colored cells, which leads to the degradation of
localization performance. In this regard, we propose a gradient aggre-
gation module based on difference convolution, which captures the
gradient information between neighboring pixels by locally computing
the difference between cell pixels, while reducing the difference in
pixel values between cells of different colors. Accordingly, this paper
proposes a GA module based on difference convolution, which can
improve the utilization of gradient information by the model and
alleviate the problem of the large color variations among cells.

The vanilla convolution commonly used by researchers can be
expressed as

𝑦(𝑝0) =
∑

𝑝𝑛∈𝑅
𝑤(𝑝𝑛) × 𝑥(𝑝0 + 𝑝𝑛), (1)

Where 𝑝0 denotes the central position of the local receptive field
𝑅, 𝑝𝑛 denotes the relative position of each value in the 𝑅 to 𝑝0,
and 𝑤(𝑝𝑛) is the learnable parameter. Correspondingly, the difference
convolution (Yu et al., 2020) can be expressed as

𝑦(𝑝0) =
∑

𝑝𝑛∈𝑅
𝑤(𝑝𝑛) × (𝑥(𝑝0 + 𝑝𝑛) − 𝑥(𝑝0)), (2)

That is, each value of the local receptive field is subtracted from the
value of its centroid (hence also known as central difference convo-
lution), which is used to form the local gradient information. Mean-
while, considering that vanilla convolution can bring stronger semantic
information, the final difference convolution is defined as

𝑦(𝑝0) =
∑

𝑝𝑛∈𝑅
𝑤(𝑝𝑛) × 𝑥(𝑝0 + 𝑝𝑛) + 𝜃(−𝑥(𝑝0) ×

∑

𝑝𝑛∈𝑅
𝑤(𝑝𝑛)), (3)

where 𝜃 is an artificially designed trade-off parameter, which will
be followed by a more in-depth discussion and ablative experimental
studies in the experimental session.

Considering that difference convolution weakens the semantic in-
formation while enhancing the gradient information, we only use it as
the front-end of feature extraction. Given the varying scales of cells,
we expect the GA module to extract gradient information at different
scales. To this end, inspired by Szegedy et al. (2015, 2016), the GA
module based on difference convolution designed in this paper is shown
in Fig. 3. It has four branches, each of which contains a difference
convolution block to enhance the gradient information of the features.
Different branches have different depths so that features at different
levels can be extracted. The refined feature maps are obtained by
overlaying different branches and adjusting the number of channels
using the 1 × 1 block.

3.2. Attention-based Ghost_CBAM module

The cells in the image are often unevenly distributed, which con-
tradicts the strategy of most methods to treat all localities in the image
equally. Specifically, existing models do not give more attention to
cell-dense regions and are computationally expensive. Therefore, we
cleverly combine CBAM (Woo et al., 2018) and Ghost (Han et al., 2020)
modules to get the Ghost_CBAM module, which has the advantages of
being lightweight and efficient.

As shown in Fig. 4, the Ghost module enhances the feature map
𝐹1 obtained by primary convolution using a cheap convolution opera-

tion, which aims to exploit an extremely small computational cost in
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Fig. 2. The overall framework of Lite-UNet. To visualize the variability of the model, we represent the module together with a feature map, e.g., the gradient aggregation module
represents the feature map output by the module. The model consists of 3 main components: a gradient aggregation module based on difference convolution used to aggregate
gradient information in the encoding phase; the Ghost_CBAM module for compressing the model and alleviating the problem of uneven cell distribution; a graph correlation
attention module that improves cell localization performance by encoding higher-order associations among features.
Fig. 3. Gradient aggregation module based on difference convolution. DC denotes
difference convolution, VC denotes traditional vanilla convolution, and 3 × 3 denotes
the size of the convolution kernel.

exchange for better performance. The primary convolution process is
as follows:

𝐹1 = 𝐹0 ∗ 𝑓, (4)

where 𝑓 ∈ R𝑐×𝑘×𝑘×𝑚 is the utilized filters, 𝐹0 is the input data, and 𝐹1
is the intrinsic feature maps generated by primary convolution. Next,
we perform a series of cheap linear operations on each intrinsic feature
in 𝐹1 to generate a ghost feature map:

𝑦𝑖𝑗 = 𝛷𝑖,𝑗 (𝑦′𝑖), ∀𝑖 = 1,… , 𝑚, 𝑗 = 1,… , 𝑠, (5)

where 𝑦′𝑖 is the intrinsic feature map in 𝐹1 and 𝛷𝑖,𝑗 is the 𝑗th liner
operation for generating the 𝑗th ghost feature map 𝑦𝑖𝑗 . With the above
operations, we can obtain 𝑛 = 𝑚× 𝑠 feature maps 𝐹2 = [𝑦11, 𝑦12,… , 𝑦𝑚𝑠]
as the refined data.

Then, the CBAM module learns attention weights sequentially along
the channel 𝑀𝑐 and spatial 𝑀𝑠 dimensions and then multiplies the
weights with the input feature map 𝐹2 for adaptive feature optimiza-
tion, which is calculated as follows

𝐹3 = 𝑀𝑐 (𝐹 )⊗ 𝐹2,

𝐹4 = 𝑀𝑠(𝐹3)⊗ 𝐹3,
(6)

where ⊗ denotes element-wise multiplication, 𝐹2 is the input feature
maps, and 𝐹4 is the output feature maps after adaptive optimization.
As shown in Fig. 2, we replace most of the convolution modules in U-
Net with the Ghost_CBAM module, which greatly reduces the number
of parameters and the computation cost of the model. Specifically, as
shown in Fig. 2, we replace all modules in U-Net except the upsampled
4

Fig. 4. Illustration of the attention-based Ghost_CBAM module. The module consists of
two main submodules: the Ghost module enhances the performance of the model by
augmenting the feature maps obtained by convolution using a cheap linear operation;
The CBAM module learns attention weights sequentially along the channel and spatial
dimensions and then multiplies the weights with the input feature maps for adaptive
feature optimization.

Fig. 5. The overall processing flow of the GCA module.

convolution with the Ghost_CBAM module, which achieves a significant
reduction in computational cost while keeping the performance of the
model basically unchanged.

3.3. Graph correlation attention module

The common paradigm of existing relevance-based graph informa-
tion embedding methods (Wu et al., 2020; Wang and Gupta, 2018) is
to encode global features in an aggregated manner and then update
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node features. However, there are two major problems with the above
methods in the process of updating: (1) Features with weak associations
are selectively filtered, making it difficult for some local features to be
updated; (2) The optimized features are directly used for subsequent
operations, which may have the problem of feature over-smoothing.
Therefore, in this paper, a new GCA module is proposed to capture the
association relationships among features to better guide the distribution
of features.

We use a generic GCN (𝐺 = (𝑉 ,𝐸)) to model the associations among
features and iteratively optimize them, where 𝑉 is the set of all nodes
and 𝐸 is the set of all edges. Specifically, given a feature map as

∈ R𝐶×𝐻×𝑊 , in order to generate a graph, the grid of 𝐶×1×1 is treated
s a node 𝑉𝑖. For each (𝑉𝑖, 𝑉𝑗 ) ∈ 𝐸, the correlation score between node
𝑖 and 𝑉𝑗 is denoted by 𝐶𝑜𝑟𝑟𝑖𝑗 = 𝑓 (𝐹𝑖, 𝐹𝑗 ), where 𝐹𝑖 and 𝐹𝑗 both belong

to R𝑐 and are the feature vectors of two nodes. As with most methods,
we use the inner product between features to measure their similarity.
To better adaptively characterize the correlation between features, we
add a linear transformation operation before the feature inner product
operation, denoted as

𝑓 (𝐹𝑖, 𝐹𝑗 ) = (𝑊𝑖𝐹𝑖) × (𝑊𝑖𝐹𝑗 )𝑇 . (7)

For a more comprehensive update of local features, we do not filter for
correlations. Using the obtained 𝐶𝑜𝑟𝑟𝑖𝑗 to update the features 𝑋𝑙, the
optimized features 𝑋𝑙+1 are obtained:

𝑋𝑙+ = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑅𝑒𝐿𝑈 (𝐶𝑜𝑟𝑟𝑖𝑗𝑋𝑙𝑊𝑙)). (8)

Considering that the optimized features 𝑋𝑙+ are too smooth, we adopt
them as attention weights to optimize the features:

𝑋𝑙+1 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑋𝑙+) ×𝑋𝑙 . (9)

Finally, the features optimized by the GCA module are obtained, and
the whole operation is shown in Fig. 5.

4. Experiments and analysis

4.1. Datasets and experimental details

In the field of cell localization, the popular publicly available
datasets include BCData (Huang et al., 2020), Seg_data, and PSU
(Tofighi et al., 2019). The BCData dataset has the largest sample size
and is the main dataset used in this paper. The following is a brief
description of these datasets.

BCData (Huang et al., 2020) is a large-scale breast tumor cell
dataset for Ki-67 cell localization and enumeration. It covers 1,338
images with a resolution size of 640 × 640 and 181,074 annotated
tumor cells. The dataset is exceedingly close to a real cell localization
scenario and has the following characteristics: (1) Diversity of tumor
cell distribution density; (2) Different positive rates of tumor cells in the
images; (3) The tumor cells vary in size and shape, and the cell borders
are indistinct. The dataset is divided into a training set, a validation set,
and a test set with a number ratio of 803:133:402.

Seg_Data (Gao et al., 2021) dataset consists of 1000 H&E stained
image patches with a resolution of 512 × 512, containing a total of
70,945 labeled cell nuclei, each with an instance segmentation mask
and a classification mask. To use this dataset for cell localization, we
derived the centroids of the cells by means of a connected domain
algorithm. The resulting dataset (which we call Seg_Data) can be used
for cell localization tasks.

PSU (Tofighi et al., 2019) dataset contains 120 images of colonic
tissue from 12 pigs with a resolution of 612 × 452. It covers 25,462
annotated cells, and the overall tone of the image is dark. We adopt 84
images as the training set and 36 images as the validation set.

Experimental details: During both the training and testing phases,
we maintain a uniform image resolution of 512 × 512. This choice is
informed by the relatively consistent image sizes within the aforemen-
5

tioned datasets. Regarding the design details of the model, as illustrated r
in Fig. 2, the overall structure of Lite-UNet is similar to that of U-Net,
including four downsampling and upsampling stages. However, the key
difference lies in the extensive optimization applied to the modules
within Lite-UNet. Notably, there are significant variations in the sizes
of convolution kernels: (1) In the GA module, all convolution kernels
have a size of 3; (2) The convolution kernel sizes in the Ghost_CBAM
module are more intricate, the Ghost sub-module uses combinations
of 3 and 1, while the CBAM sub-module employs combinations of 7
and 1; (3) The Graph correlation attention module does not involve
convolution operations. (4) For the upsampling paired with convolution
module, the convolution kernel size is set to 3. For the training process,
the settings are as follows: we employ the mean squared error loss as
the optimization objective, use the Adam optimizer (Kingma and Ba,
2014) to update network parameters, set the model’s learning rate to
1e-4, utilize a batch size of 12, and apply data augmentation through
horizontal flipping. All experiments were conducted on Ubuntu 18.04,
using an NVIDIA Tesla P100 GPU (∼16 GB). Lastly, we plan to make
both the experimental code and processed datasets publicly accessible
on GitHub at the following repository: Lite-UNet.

4.2. Evaluation criteria

The task of this paper is cell localization while counting the number
of cells, so the evaluation criteria contain localization criteria and
counting criteria.

Localization criteria: To accurately evaluate the matching relation-
ship between prediction points and cell truth points, we use Precision,
Recall, and F1 score to evaluate the localization performance.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒

, (10)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

, (11)

𝐹1 =
(𝛽2 + 1) ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝛽2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

, 𝛽 = 1 (12)

, where True Positive indicates a successful match when the distance
between a given predicted point and the true value point is less than a
threshold 𝜎. The design of 𝜎 is closely related to the accuracy required
or cell localization in the task, and a fixed threshold of two levels (𝜎

= 5, 𝜎 = 10) is chosen in this paper to evaluate the performance of the
model. The smaller the threshold value is, the tighter the localization
accuracy is.

Counting criteria: Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) are used to evaluate the counting performance.

𝑀𝐴𝐸 = 1
𝑚

𝑚
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖|, (13)

𝑀𝑆𝐸 =

√

√

√

√

1
𝑚

𝑚
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2, (14)

here 𝑚 is the number of cell images, 𝑦𝑖 is the number of ground truth
n 𝑖th image, and 𝑦𝑖 is the predicted number derived from this image
y cell localization.

In addition, to objectively analyze the computational cost of the
odel, we use three commonly used metrics: the number of parameters

Params in M), computational complexity Giga Floating-point Opera-
ions Per second (GFLOPs), and inference time (in ms). The number
f model parameters is the total number of parameters to be trained
n the network model, reflecting the spatial complexity of the model.
he computational complexity refers to the number of floating-point
perations, i.e., the number of floating-point operations per second.
urthermore, we test the inference time of the model on the GPU, con-
idering that the number of parameters and the amount of computation
re difficult to accurately reflect the inference speed of the model in
eal application scenarios.

https://github.com/Boli-trainee/Lite-UNet
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Table 1
Quantitative comparison of localization and counting performance of different models
on the BCData test dataset. For more visualization, the extreme values in the different
groups are bolded separately, as well as in the table below.

Methods Counting Localization (5) Localization (10)

MAE/RMSE↓ F1/Pre/Rec (%)↑ F1/Pre/Rec (%)↑

U_CSRNet 18.1/23.8 73.8/73.7/74.0 85.6/85.4/85.7
MPViT 22.3/29.2 75.3/79.3/71.6 85.5/90.1/81.4
Attention U-Net 19.6/24.9 77.1/74.9/79.5 86.5/84.0/89.1
TransUNet 17.7/23.3 77.3/76.5/78.1 86.9/86.1/87.8
Swin Transformer 17.1/23.1 78.1/77.8/78.4 87.1/86.7/87.4
HRNet 18.5/24.7 79.2/80.1/78.3 87.3/88.4/86.3
ConvNeXt 18.9/26.0 79.3/82.1/76.7 87.4/90.5/84.6

U-Net (Baseline) 24.9/33.4 76.7/81.7/72.1 85.7/80.7/91.4
Lite-UNet (Our) 18.1/24.3 76.5/77.0/76.1 86.3/86.3/86.4

Table 2
Comparison of computational cost of different models.
Methods Computational cost

Params↓ GFLOPs↓ Speed↓

U_CSRNet 16.30 109.48 150
MPViT 57.98 189.51 199
Attention U-Net 34.88 266.27 168
TransUNet 93.19 128.68 192
Swin Transformer 203.20 280.08 268
HRNet 66.58 142.12 195
ConvNeXt 89.72 225.53 172

U-Net (Baseline) 34.53 261.87 118
Lite-UNet (Our) 1.30 17.50 92

4.3. Comparative experiments and analysis

Given that this paper is devoted to design a lightweight and efficient
cell localization model, we not only test the localization and counting
performance of the model, but also calculate the computational cost,
including the number of parameters(in M), computational complex-
ity(in GFLOPs), and inference speed(in ms). First, we compare the
localization and counting performance of multiple models on BCData
(the largest cell localization task dataset), as shown in Table 1. It is
worth mentioning that our comparison models include U_CSRNet (Li
et al., 2018), MPViT (Lee et al., 2022), Attention U-Net (Oktay et al.,
2018), TransUNet (Chen et al., 2021b), Swin Transformer (Liu et al.,
2021), HRNet (Wang et al., 2020), W-Net (Mao et al., 2021), and Con-
vNeXt (Liu et al., 2022). Referring to the operation of concatenating the
output feature maps of multiple phases in HRNet, we also performed
the same operation on the above models to ensure that the inputs and
outputs are of the same size. As can be seen, the Lite-UNet proposed
in this paper shows some improvement over our baseline model U-Net,
and is also competitive with many recently popular models. Second, we
show the comparison of the computational cost of different models in
Table 2. Combined with Table 1, we can conclude that the Lite-UNet
model in this paper achieves a very competitive performance while
significantly reducing the computational cost. Specifically, compared
with U-Net, Lite-UNet achieves similar performance with only 3.7% of
the original number of parameters, 6.7% of the computation, and 75%
of the inference time.

In addition, in order to verify the performance of the models more
comprehensively, we also compare them on the datasets Seg_data (Gao
et al., 2021) and PSU (Tofighi et al., 2019), as shown in Tables 3 and 4.
It can be seen that Lite-UNet outperforms the baseline model U-Net in
Table 3 and is not far from other popular models. However, according
to Table 4, it can be seen that the model proposed in this paper
performs poorly in the PSU dataset. According to our observation, the
main reason is that the overall image in this dataset is very dark and the
cell colors are more uniform, which is not compatible with the gradient
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aggregation module proposed in this paper. Specifically, in the BCData
Table 3
Quantitative comparison of localization and counting performance of different models
on the Seg_Data test dataset.

Methods Counting Localization (5) Localization (10)

MAE/RMSE↓ F1/Pre/Rec (%) ↑ F1/Pre/Rec (%) ↑

U_CSRNet 7.5/8.8 81.8/78.5/85.5 88.2/84.6/92.1
MPViT 6.2/7.8 82.0/82.5/81.6 88.5/88.4/88.7
Attention U-Net 4.6/6.0 83.4/83.6/83.2 89.7/89.8/89.5
TransUNet 5.0/7.0 83.6/84.0/83.3 90.0/90.3/89.6
Swin Transformer 6.0/7.9 82.4/80.2/84.6 89.4/87.0/91.9
HRNet 4.9/6.9 85.6/87.3/83.9 90.4/92.3/88.7
ConvNeXt 5.8/7.1 83.7/82.9/84.4 89.4/88.5/90.4
W-Net – / – 85.0/83.0/88.0 – / – / –

U-Net (Baseline) 5.8/7.9 83.7/86.7/80.8 89.4/92.6/86.4
Lite-UNet (Our) 5.2/7.4 84.4/85.8/83.1 89.6/91.3/86.9

Table 4
Quantitative comparison of localization and counting performance of different
models on the PSU dataset.
Methods Counting Localization

MAE↓ RMSE↓ F1↑ (𝜎=5) F1↑ (𝜎=10)

U_CSRNet 32.1 38.2 54.5 80.4
MPViT 36.6 44.7 61.1 81.0
Attention U-Net 31.4 36.8 63.5 82.1
TransUNet 40.1 49.4 58.9 80.1
Swin Transformer 26.6 32.1 62.2 82.1
HRNet 27.6 32.4 66.1 83.5
ConvNeXt 27.4 33.5 63.5 82.8

U-Net (Baseline) 32.6 38.5 61.0 81.0
Lite-UNet (Our) 33.7 38.4 60.2 79.6

and Seg_data datasets, the image background is white and the cell color
disparity is large, and the proposed GA module is able to enhance the
robustness of the model for cell color recognition. However, in the PSU
dataset, the image background is black and the cell color is uniformly
very light blue, which makes it difficult for the GA module to work.
For more visualization of the effect of cell localization in our model,
we perform tests on some typical cell images, as shown in Fig. 6.

4.4. Ablation experiments

In order to objectively assess the contribution of each module, we
conduct experiments on each module, as shown in Table 5. We use
U-Net as the baseline and keep iterating the model to finally obtain Lite-
UNet. First, most of the convolutional modules in U-Net are replaced
by Ghost_CBAM modules, and the number of channels is reduced,
resulting in a significant reduction in the computational cost of the
model, where the number of parameters and FLOPs of the model is
reduced to 3.6% and 6.7% of the original model, respectively. However,
benefiting from the Ghost_CBAM module’s mitigation of the uneven cell
distribution and the clever use of feature maps, the model’s localization
and counting performance does not deteriorate significantly but rather
improves at a threshold of 10. Next, the GA module based on difference
convolution is used to replace the first coding module in the original
model to resolve the large color differences in the cell images. Exper-
imental results show that the module is able to significantly improve
the localization and counting performance of the model with almost no
increase in computational cost, with a significant 4% improvement in
localization performance. Finally, the GCA module optimizes the high-
level features in the U-Net structure to better guide the distribution of
features by capturing their correlation relationships. The addition of
this module significantly improves the localization performance of the
model by 8% for a threshold value of 5.

As shown in Eq. (3), the main advantage of difference convolution
is to enhance the gradient information, where the trade-off parameter 𝜃
determines the ratio of gradient information to semantic information. It
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Fig. 6. Visualization results of the cell localization effect of our Lite-UNet.
Fig. 7. Ablation experiments for the trade-off parameter 𝜃 of the difference convolution. Here, Figures A and B represent dissection experiments for counting and localization
performance, respectively. When the 𝜃 = 0, the difference convolution degenerates to the traditional vanilla convolution.
Table 5
Ablation experiments on the BCData test dataset. The computational cost, counting, and localization performance are shown, respectively.
Methods Computational cost Counting Localization

Params↓ GFLOPs↓ Speed ↓ MAE↓ RMSE↓ F1 (𝜎=5)↑ F1 (𝜎=10)↑

U-Net 34.53 261.87 118 24.9 33.4 76.7 85.7
+Ghost_CBAM 1.25 16.80 102 19.5 25.8 75.2 85.8
+GA 1.25 16.80 89 18.3 25.1 75.7 86.2
+GCA (Our) 1.30 17.50 92 18.1 24.3 76.5 86.3
is worth noting that when 𝜃 = 0, the proportion of gradient information
drops to 0, and the gradient aggregation module degenerates to the
traditional feature aggregation module. As can be seen from Fig. 7,
the trade-off parameter 𝜃 has a significant influence on both the lo-
calization and counting performances of the model. The best counting
performance is achieved when 𝜃 = 0.4. The localization performance is
the best when the 𝜃 = 0.2 or 0.7.
7

5. Conclusion

In this paper, a lightweight and efficient cell localization model
based on U-Net is proposed. Our Lite-UNet consists of three main com-
ponents: (1) the gradient aggregation module, which can effectively
utilize the multi-scale gradient information of features to enhance the
robustness of the model to cell color changes; (2) the Ghost_CBAM
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module, which can significantly compress the computational cost of
the model without losing a large amount of accuracy; (3) the graph
correlation attention module, which can improve the localization per-
formance by learning the higher-order correlations among features to
optimize features. Comprehensive experiments show that our Lite-UNet
is capable of quickly and accurately localizing cells in images with
competitive performance. Compared to existing models, the Lite-UNet
can be deployed to more medical scenarios where computational power
resources are not abundant, further increasing the available scope of
computer medical assistance. In the future, we will design an end-to-
end, lightweight and high-performance cell localization model based
on graph neural networks.
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