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Key Points 

We develop a novel histology image-based gene prediction model named HGGEP, which demonstrates high 

accuracy and robust performance. 

To reveal the intricate relationship between cell morphology and gene expression in images, we propose a 

gradient enhancement module, which effectively improves the model’s capability in perceiving cell 

morphology in images. 

HGGEP includes a hypergraph module that efficiently models higher-order associations among latent features 

across multiple latent stages, resulting in significant performance improvement. 
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ABSTRACT 

Spatial transcriptomics reveals the spatial distribution of genes in complex tissues, providing crucial insights 

into biological processes, disease mechanisms, and drug development. The prediction of gene expression 

based on cost-effective histology images is a promising yet challenging field of research. Existing methods 

for gene prediction from histology images exhibit two major limitations. First, they ignore the intricate 

relationship between cell morphological information and gene expression. Second, these methods do not fully 

utilize the different latent stages of features extracted from the images. To address these limitations, we 

propose a novel hypergraph neural network model, HGGEP, to predict gene expressions from histology images. 

HGGEP includes a gradient enhancement module to enhance the model’s perception of cell morphological 

information. A lightweight backbone network extracts multiple latent stage features from the image, followed 

by attention mechanisms to refine the representation of features at each latent stage and capture their relations 

with nearby features. To explore higher-order associations among multiple latent stage features, we stack them 

and feed into the hypergraph to establish associations among features at different scales. Experimental results 

on multiple datasets from disease samples including cancers and tumor disease, demonstrate the superior 

performance of our HGGEP model than existing methods. 

Keywords: spatial transcriptomics, gene expression prediction, histology image, gradient enhancement, 

attention mechanism, hypergraph. 

 

INTRODUCTION 

Diverse cell types are intricately arranged both spatially and structurally within tissues to fulfill their specific 

functions. Revealing the intricate spatial architecture and cell activities within heterogeneous tissues holds 

considerable importance in comprehending the cellular mechanisms and functions associated with diseases1-

4. Spatial Transcriptomics (ST) serves as an advanced technology that can be utilized to elucidate the spatial 

distribution of genes at both tissue and spot levels. This technology has significantly advanced our 

understanding of gene expressions in biological processes5, playing a crucial role in exploring disease 

mechanisms6 and revealing novel drug targets7. The rapid progress of ST technology allows for the 

simultaneous analysis of gene expression, cell or spot locations, and corresponding histology images. 

Currently, numerous researchers are actively engaged in related studies, covering spatial domain recognition 
8-10, spatial transcriptomics deconvolution11-13, and inference of spatial cellular interactions14, 15. 

However, the considerable cost associated with acquiring spatial transcriptomics data limits the widespread 

pursuit of research on ST technologies. In contrast, histology images of various disease tissues are more 

accessible. Recently, researchers have shifted their focus toward predicting gene expression from whole-slide 

image (WSI) data. Some methods, such as ST-Net16, HisToGene17, and Hist2ST18, have emerged for this 

purpose. Initially, ST-Net pioneers the use of deep learning techniques to predict spatial gene expression from 

WSI, yielding promising results. HisToGene and Hist2ST improve the prediction performance by 

incorporating transformer models to capture global associations of image features across different spots in a 

WSI. Meanwhile, Hist2ST leverages graph neural networks19 to enhance local associations of image features 

between spots. However, these existing methods still face two primary limitations: (1) they ignore the intricate 

relationship between cell morphological information and gene expression; (2) insufficient utilization of image-

based features at multiple latent stages, coupled with the oversight of high-order associations among those 

features. 

Regarding the first limitation, existing methods based on traditional convolution primarily concentrate on 

semantic information, i.e., pixel values in the image. They do not sufficiently consider the gradient relationship 

between the current position and its neighboring positions, which leads to the difficulty of the model to 

perceive the cell morphological information related to gene expression. To address this limitation, our HGGEP 

model includes the gradient enhancement module to refine the extracted imaging features and generate latent 

feature maps with prominent cell morphological information. To address the second limitation and enhance 

the utilization of features at multiple latent stages within WSI, our HGGEP model employs a two-step strategy. 

Specifically, HGGEP first extracts multiple latent features from WSI through a lightweight backbone 

network20, and subsequently refine the representation of features at each latent stage using the attention 



mechanism21, 22. To explore higher-order associations among multiple latent stage features, we innovatively 

introduce a hypergraph association module based on multiple metrics. Collectively, we propose a novel 

HGGEP model that overcomes existing challenges and achieves superior performance in gene expression 

prediction from histology images. 

 

RESULTS 

Overview of HGGEP model 

Our hypergraph neural network-based model, HGGEP (HyperGraph Gene Expression Prediction), is depicted 

in Figure 1. The process initiates with the partitioning of a whole slide image into multiple patches centered 

around spots. Acknowledging the intricate relationship between cell morphology and gene expression, the 

Gradient Enhancement Module (GEM) is utilized to enhance the model's perception of cell morphology. The 

latent features preprocessed by GEM undergo processing through a lightweight backbone network20 to extract 

features at multiple latent stages. These latent features are then fed into the Convolutional Block Attention 

Module (CBAM21) and Vision Transformer (ViT22), utilizing attention mechanisms to optimize the 

representation of features at each latent stage. To uncover high-order associations among features across 

different stages, a Hypergraph Association Module (HAM) based on nearby positions and distance relations 

is employed for global associations modeling and local representation. Following this, the latent features 

output from the ViT and HAM are concatenated and fed into the Long Short-Term Memory (LSTM23, 24) 

module, enhancing information exchange among latent features. Ultimately, the latent features from the last 

layer are input into a gene regression head to yield the predicted gene expression on this histology image. 

 

Figure 1. Overview of our HGGEP model. This model consists of three pivotal components: GEM, designed to capture the 

intricate relationship between cell morphology and gene expression; CBAM and Vision Transformer modules, employed for 

extracting internal features at each latent stage; and a Hypergraph Association Module (HAM), dedicated to revealing higher-

order associations among multiple latent stage features. 

Performance evaluation using diverse spatial transcriptomics datasets 

To comprehensively evaluate the performance of HGGEP, we conducted experiments using a leave-one-out 

validation approach on a total of 44 sections from human HER2-positive breast tumor (HER2+25) dataset 

(section A1-G3) and human cutaneous squamous cell carcinoma (cSCC26) dataset (section P2_ST_rep1-

P10_ST_rep3). The performance of HGGEP is compared with existing methods including Hist2ST, 

HisToGene, and STNet. Figure 2 illustrates the comparison results based on the Pearson Correlation 

Coefficient (PCC) index for each method. Specifically, on the HER2+ datasets, the HGGEP model exhibits 



an average PCC index and median PCC index approximately 5% higher than the second-best-performing 

Hist2ST model. Similarly, on the cSCC datasets, the HGGEP model outperforms the Hist2ST model by around 

4%. Figure 2 reveals that most of the compared models perform less favorably in sections A2-A6 and F1-F3, 

with PCC indices consistently below 0.07. In contrast, our HGGEP model successfully improves the 

performance by approximately 5%. Notably, the most substantial improvement relative to the compared 

models occurs in sections C1-C5, with the PCC increase of about 7%. These results demonstrate that compared 

with existing methods, our HGGEP model presents superior capabilities of predicting gene expressions from 

histology images.  

 

Figure 2. Benchmark of the gene expression prediction performance. Comparison results between our HGGEP model and 

existing methods on the (a) HER2+ datasets and (b) and cSCC datasets. 

To assess the contribution of each module's performance, ablation experiments were conducted on the HER2+ 

datasets, and the results are presented in Figure 3. In this figure, red color represents the performance of 

ablation experiments conducted on the HGGEP model, while the other three colors correspond to the 

compared methods (Hist2ST, HisToGene, STNet). The observations in Figure 3 lead to the following three 

conclusions: 1) The model's overall performance exhibits an increasing trend of PCC with the gradual 

inclusion of each new module, indicating that the combination of those modules contributes significantly to 

the overall performance of HGGEP. 2) Based on the performance of ablation experiments, the inclusion of 

three modules—GEM, ViT, and HAM—demonstrates more pronounced improvement effects than the other 

components. Such observation highlights the capability of these three modules in capturing cell morphology 

within WSI, optimizing the representation of features at each latent stage, and capturing high-order 

associations among features across multiple latent stages. 3) A clear performance improvement is observed 

when comparing our ablated model to the other three models (Hist2ST, HisToGene, STNet). 



  

Figure 3. Ablation studies of our HGGEP model. Module ablation experiments for the HGGEP model. The observed 

performance improvement with the addition of modules underscores their contributions to the performance of HGGEP model. 

Evaluation of predicted gene expression 

In this section, we delve into the visualization of the top predicted genes by the HGGEP model on the HER2+ 

and cSCC datasets. To offer a more visually impactful representation of the model's performance, we include 

comparisons with two additional models, Hist2ST and HisToGene, as depicted in Figure 4. Specifically, the 

upper and lower panels showcase the top gene prediction performance of different models on the HER2+ and 

cSCC datasets, respectively. Each dot in the figures represents a specific gene, with the vertical axis indicating 

the PCC index of genes predicted by the HGGEP model, and the horizontal axis corresponding to the 

HisToGene (left panel) and Hist2ST (right panel) models. Therefore, data points above the diagonal line in 

the figure indicate that the HGGEP model achieves higher PCC values for those genes compared to the other 

methods (HisToGene or Hist2ST). Additionally, data points positioned in the upper-left corner signify superior 

gene prediction performance of HGGEP compared to the comparison methods (HisToGene or Hist2ST). These 

results show that the HGGEP model presented superior performance in gene expression prediction. 

 

Figure 4: Performance comparison of top 10 gene predictions across two datasets. Data points positioned in the upper-

left corner signify superior gene prediction performance of HGGEP compared to the comparative models (HisToGene or 

Hist2ST). 



It is noteworthy that the top genes identified in the HER2+ dataset (GNAS, UBA52, MUCL1) and the cSCC 

dataset (EIF5, MSMO1, STMN1) indicate significant biological relevance. In the HER2+ tumor 

microenvironment, GNAS is implicated with critical roles in cell signal transduction27, potentially influencing 

the biological processes including the proliferation and metastasis of tumor cells28. UBA52, closely associated 

with ubiquitin-protein conjugation29, may significantly impact the treatment response and prognosis of 

HER2+ tumors due to its aberrant expression30. Additionally, MUCL1, involved in cell adhesion and tumor 

microenvironment regulation, plays a crucial role in HER2+ tumors and offers potential insights for precision 

therapy31. On the other hand, in the cSCC environment, EIF5 is implicated in protein synthesis regulation and 

cell proliferation32. MSMO1 participates in cholesterol biosynthesis33, and STMN1 may influence biological 

processes such as cell division and migration34. Therefore, accurate prediction of those genes contributes to 

exploring the molecular mechanisms driving cSCC development, thus gaining a better understanding of tumor 

cell activities in the microenvironment. 

For a more intuitive comparison of top gene prediction performance across different models, we conducted 

the visualization of predicted genes. To ensure a fair comparison, we select four genes mentioned in Hist2ST 

(GNAS, FASN, MY12B, and SCD) and present their predicted gene expressions by each model in Figure 5. 

This figure demonstrates our model achieves the best prediction performance. For example, our model 

achieves better prediction of the GNAS gene expression (PCC= 0.637), compared with the competitors 

(Hist2ST, PCC = 0.591; HisToGene, PCC = 0.493). Similarly, for the genes FASN, MY12B, and SCD, our 

model demonstrates consistently better prediction performance. These results support that our model not only 

excels in overall performance but also demonstrates outstanding performance in predicting specific genes with 

biological significance. 

Raw Gene Expression HGGEP Hist2ST HisToGene 

    

    

    

    

Figure 5. Visualization of predicted genes. The top predicted genes by HisToGene in the HER2+ dataset, where the p-value 

for each tissue section was obtained in the association test between the predicted and observed gene expression. 

 



Evaluation of spatial region detection 

To further demonstrate the accurate gene expressions predicted by our model, we evaluate the spatial region 

detection capability across the entire histology image accordingly. We performed clustering analysis on the 

predicted gene expressions of each method, as illustrated in Figure 6. Here we utilized six sections (B1, C1, 

D1, E1, F1, and G2) of the HER2+ dataset, with available annotations from expert professionals. As depicted 

in Figure 6, our model consistently outperforms the latest Hist2ST and HisToGene models, achieving nearly 

optimal detection performance. Across the six sections, our model surpasses the runner-up model Hist2ST by 

approximately 11% in average performance. Particularly noteworthy is the outstanding performance in section 

C1, where our model significantly improves the ARI index by 30% compared to Hist2ST, demonstrating the 

superior precision of our HGGEP model in region detection. 

GT HGGEP Hist2ST HisToGene 

B1 (ARI: 0.217) ARI: 0.399 ARI: 0.286 ARI: 0.311 

    

C1 (ARI: 0.12) ARI: 0.317 ARI: 0.017 ARI: 0.014 

    

D1 (ARI: 0.228) ARI: 0.509 ARI: 0.500 ARI: 0.297 

    

E1 (ARI: 0.037) ARI: 0.214 ARI: 0.089 ARI: 0.040 

    

F1 (ARI: 0.079) ARI: 0.148 ARI: 0.118 ARI: 0.114 

  
  

G2 (ARI: 0.206) ARI: 0.224 ARI: 0.158 ARI: 0.183 



 
 

  

Figure 6. Spatial domain detection based on predicted gene expressions. The accuracy of spatial domain detection on 

the HER2+ dataset using the gene expressions predicted by each model. GT represents the ground truth labels from the 

pathology annotations. 

DISCUSSION 

Gene expression prediction is a pivotal focus in current research, with its extensive applications making it a 

central theme in scientific exploration. However, many existing methods face limitations due to their reliance 

on costly data, which constrains further research progress. In response to this challenge, some researchers 

have turned to a more cost-effective strategy, utilizing histology images to unveil gene expression. In this 

work, we have introduced HGGEP, a cutting-edge hypergraph neural network model tailored for the precise 

prediction of gene expression from histology images. HGGEP has been applied to a total of 44 sections, 

showcasing robust performance in predicting gene expression and underscoring the pivotal role of histology 

images in this process. 

Our HGGEP model outperforms existing methods in three aspects. First, we enhance the model's ability to 

perceive morphological information through the gradient enhancement module, thus enabling the model to 

capture the relationship between cell morphology and gene expression. Second, features at different stages in 

the image have different information, usually high-level features have more semantic information, while low-

level features carry more detailed features. Therefore, we use a lightweight backbone to extract different levels 

of information and then use this attention mechanism to optimize the features at each stage. Lastly, we fuse 

features from various stages, establishing global associations among spots to achieve comprehensive 

information integration. 

Though HGGEP presents superior performance, we anticipate key areas for future exploration and 

improvement. First, most existing methods rely on large amounts of labeled data for learning, thus limiting 

the ability of the model to generalize to small sample domains. To overcome this limitation, future work could 

consider fine-tuning based on large vision models in the biomedical field35, 36. By leveraging the wealth of 

knowledge that already exists in large vision models, we can enhance the generalizability of the models to a 

wider range of application scenarios. Second, existing methods typically use histology images as input for 

predicting gene expression. Future research will consider introducing more modal information as input to help 

establish mapping relationships between images and gene expression, such as molecular biology data or 

pathology data. By synthesizing multimodal information, it is expected to improve the accuracy and 

comprehensiveness of gene expression prediction. In conclusion, the experiments in this paper demonstrate 

the power of HGGEP in predicting gene expression based on histology images. Moreover, future work could 

focus on enhancing model generalization capabilities, including the use of large vision models and multimodal 

information, to better accommodate the diversity of biomedical data and scenarios. 

MATERIALS AND METHODS 

Data processing 

To validate the efficacy of our proposed method, we utilized the spatial transcriptomics datasets comprising 

histology images and gene expression data at spot locations. We primarily leveraged the HER2+ and cSCC 

datasets profiled from 32 and 12 tissue slides, respectively, with a total of 9,612 spots and 6,630 spots 

respectively. For each histology image in the datasets, we segment it into multiple sub-images based on the 

positions of spots. Each sub-image is cropped by 112×112 pixels around the spot’s center. The input sub-image 

features are annotated as 𝒙𝑖𝑛 ∈  𝑅N×3×112×112, where N is the number of spots within the histology image. 

During the validation phase, we adopt a consistent leave-one-out cross-validation strategy. Taking the HER2+ 

dataset as an example, for each section, we train the model on the remaining 31 sections and validate it on that 

leave-out section. 

HGGEP model 



In contrast to prior methods, HGGEP significantly improves the prediction accuracy of gene expression from 

histology images. The detailed structure of HGGEP model is illustrated below. 

Gradient Enhancement Module 

To enrich the cell morphological information closely associated with gene expression, this paper proposes the 

GEM, which enhances the model’s perception of cell morphology through difference convolution37, 38. This 

module comprises two key components: 1) the convolution process that convolves the sub-images; 2) the 

gradient enhancement process that enhances the cell morphology information by difference convolution. 

Figure 1 illustrates the implementation of GEM with the steps of convolution and difference operations. 

Specifically, a 3 × 3  convolutional kernel is applied to a 5 × 5  input split histology image, resulting in a 

downsampled feature map of size 3 × 3. Subsequently, a gradient enhancement operation is performed on the 

resulting feature map, aiming to utilize the differences between neighboring pixels in the feature map to 

enhance its gradient information. Traditional convolution process can be expressed as: 

TC(𝑝0) = ∑ 𝒘𝑝n
⋅ 𝒙𝑝n

𝑝n∈𝑅(𝑝0)

   (1) 

, where 𝑝0 represents the central position of the local receptive field 𝑅(𝑝0) , 𝑝n denotes the relative position 

of other pixels within the receptive field 𝑅(𝑝0) =  {(−1, −1), (−1,0), … , (0,1), (1,1)}, 𝒙𝑝n
 denotes the pixel 

value at position 𝑝n in the input feature map, 𝒘𝑝n
 is a learnable parameter. To achieve gradient enhancement, 

we deform the traditional convolution TC(𝑝0) to difference convolution DC(𝑝0): 

DC(𝑝0) = ∑ (𝒘𝑝n
⋅ 𝒙𝑝n

)

𝑝n∈𝑅(𝑝0)

+ θ (−𝒙𝑝0
⋅ ∑ 𝒘𝑝n

𝑝𝑛∈𝑅(𝑝0)

)    (2) 

, where 𝜃 is a hyperparameter that regulates the balance between semantic and gradient information, and we 

set it to 0.7 default. When 𝜃 = 0 , the difference convolution is the same as the traditional convolution 

operation. Given the input sub-images 𝒙𝑖𝑛 ∈  ℝ𝑁×3×112×112, each of the convolution (𝐹𝑇𝐶 and 𝐹𝐷𝐶) exports 

the  𝐹𝑇𝐶 ϵ ℝ𝑁×6×56×56 and 𝐹𝐷𝐶  ϵ ℝ𝑁×6×56×56. The latent features from GEM module are 𝑧𝐺𝐸𝑀 ∈ ℝ𝑁×3×56×56. 

The entire GEM operates as follows: 

𝑭𝑇𝐶 = BN( σ( TC(𝒙𝑖𝑛))),      (3) 

𝑭𝐷𝐶 = BN( σ( DC(𝒙𝑖𝑛))),      (4) 

𝑧𝐺𝐸𝑀 = BN( σ( MLP( [𝑭𝑇𝐶, 𝑭𝐷𝐶]))),       (5) 

where 𝑧𝐺𝐸𝑀  is the enhanced latent feature map, 𝜎 is ReLU activation function，BN is Batch Norm. Here the 

Multi-Layer Perceptron (MLP) layer is used to adjust the number of feature channels, which then serve as 

input into the subsequent backbone network. 

Backbone and Multiple Latent Stage Feature 

With the GEM-enhanced feature map 𝑧𝐺𝐸𝑀 , the backbone network, CBAM21, and ViT22 are employed to 

extract and optimize multiple latent stage feature information from the 𝑧𝐺𝐸𝑀, enhance the model’s prowess in 

latent feature modeling, and capture global relationships among spots at each latent stage.  

For the backbone network, we chose a lightweight shufflenet V220 to optimize computing efficiency. This 

network produces output across five stages, with diminishing latent feature map sizes as the network deepens. 

For subsequent processing, we leverage features from the last three stages from the backbone, feeding them 

into the CBAM. As shown in Figure 1, CBAM utilizes both Channel Attention (CA) and Spatial Attention 

(SA) for adjusting the weight of each channel/spot by considering global information. With these attention 

mechanisms, CBAM enhances the network’s comprehension of vital features in the image and improves the 

model’s performance and generalization capabilities. 

Specifically, the GEM output features 𝑧𝐺𝐸𝑀 ∈ ℝ𝑁×3×56×56  are first fed into the shufflenet V2 backbone 

network to get the embeddings at 5 latent stages [𝑺1 ∈ ℝ𝑁×24×29×29, 𝑺2 ∈ ℝ𝑁×48×15×15, 𝑺3 ∈ ℝ𝑁×96×8×8, 𝑺4 ∈
ℝ𝑁×192×4×4, 𝑺5 ∈ ℝ𝑁×1024×4×4]. The embeddings of the last 3 latent stages are selected for subsequent analysis. 

Subsequently, we input these embedding features into the CBAM to optimize the features of each latent stage 



separately. Specifically, for 𝑺𝑖, 𝑖 ∈ {3,4,5}, the CBAM module performs as below: 

CA(𝑺𝑖) = σ (MLPchannel (AvgPool
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

(𝑺𝑖) ⊕ MaxPool𝑠𝑝𝑎𝑡𝑖𝑎𝑙 (𝑺𝑖))),       (6) 

𝒉𝑖
𝑡𝑚𝑝

 = 𝑺𝑖 ⊙  CA(𝑺𝑖),   (7) 

SA(𝒉𝑖
𝑡𝑚𝑝) = σ (Conv7×7([AvgPool

𝑐ℎ𝑎𝑛𝑛𝑒𝑙
(𝒉𝑖

𝑡𝑚𝑝), MaxPool𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝒉𝑖
𝑡𝑚𝑝)])),       (8) 

𝒉𝑖 = 𝒉𝑡𝑚𝑝4 ⊙ SA(ℎ𝑖
𝑡𝑚𝑝),      (9) 

where the symbol ⊕ denotes element-wise addition, ⊙ represents element-wise multiplication, and 𝜎 is the 

ReLU activation function. AvgPool
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

(𝑺𝑖)  and MaxPool𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑺𝑖)  denote the average and maximum 

pooling operations on the embedding feature 𝑺𝑖, respectively, and the output of both is ℝ𝑁×192×1×1. As shown 

in equation (6), the outputs of the two pooling operations are element-wise added. They subsequently enter 

the MLPchannel  for channel scaling, with the scaling factor set to 16  by default (equation 6). For spatial 

attention SA(ℎ𝑖
𝑡𝑚𝑝) , AvgPool

𝑐ℎ𝑎𝑛𝑛𝑒𝑙
(ℎ𝑖

𝑡𝑚𝑝)  and MaxPool𝑐ℎ𝑎𝑛𝑛𝑒𝑙 (ℎ𝑖
𝑡𝑚𝑝)  perform average and maximum 

pooling for the channels, respectively, followed by the 7 × 7  convolution. It is worth noting that CBAM-

optimized hidden features maintain their original input dimension, i.e., the hidden features 𝒉𝑖 after CBAM 

optimization are 𝒉3  ∈ ℝ𝑁×96×8×8, 𝒉4 ∈ ℝ𝑁×192×4×4, 𝒉5 ∈ ℝ𝑁×1024×4×4. 

To facilitate subsequent processing, we uniformly adjust the above three hidden features [𝒉3, 𝒉𝟒, 𝒉𝟓 ] to 

ℝ𝑁×1024 by linear and dimension transformation. These hidden features are fed into the ViT module separately 

and its self-attention mechanism is utilized to capture the associations among the spots in WSI. For 𝒉𝑖, 𝑖 ∈
{3,4,5}, the ViT module is implemented as follows: 

𝒛𝑖
𝑡𝑚𝑝

 =  Multihead(𝒉𝑖) = Concat(head1(𝒉𝑖), … , head8(𝒉𝑖)) 𝑾𝑂  ,       (10)  

For each head 𝑡 ∈ {1, . . ,8}, head𝑡(𝒉𝑖) = Attention(𝑸𝒉𝑖
, 𝑲𝒉𝑖

, 𝑽𝒉𝑖
)  = Softmax (

𝑸𝒉𝑖
𝑲𝒉𝑖

𝑇

√𝑑𝑘

𝒉𝑖
) 𝑽𝒉𝑖

 ,        (11) 

where 𝑸𝒉𝑖ℎ = 𝒉𝑖𝑾𝑞
𝒉𝑖 ,    𝑲𝒉𝑖

=  𝒉𝑖𝑾𝑘
𝒉𝑖   , 𝑽𝒉𝑖

=  𝒉𝑖𝑾𝑣
𝒉𝑖 , 𝒉𝑖  represents one of the input features [𝒉3, 𝒉𝟒, 𝒉𝟓 ], 

𝑾𝑂 , 𝑾𝑞
ℎ, 𝑾𝑘

ℎ, 𝑾𝑣
ℎ  denote the learnable weight matrices, 𝑸𝒉𝑖

, 𝑲𝒉𝑖
, 𝑽𝒉𝑖

 are the matrices of queries, keys, and 

values obtained by linear transformation of 𝒉𝑖 , respectively. The parameter 𝑑𝑘
𝒉𝑖  is used to scale the 

denominator in the dot-product attention, controlling the scaling of attention weights. These operations enable 

the model to dynamically model the associations among spots, leading to an optimal allocation of attention. 

After the optimization of the multi-head attention mechanism, the dimension of the ViT output 

[𝒛3
𝑡𝑚𝑝, 𝒛4

𝑡𝑚𝑝, 𝒛5
𝑡𝑚𝑝

] remain constant at ℝ𝑁×1024. 

Finally, a Feed-Forward Network (FFN) is applied for additional non-linear transformations and 

representation learning of the hidden features from each stage: 

𝒛𝑖
𝑉𝑖𝑇 = FFN(𝒛𝑖

𝑡𝑚𝑝
) = ReLU(𝒛𝑖

𝑡𝑚𝑝
𝑾1 + 𝑏1 )𝑾2 + 𝑏2        (13) 

, where 𝑾𝑖 and 𝑏𝑖 are the weight matrix and bias vector, respectively. After ViT optimization, it is obtained 

[𝒛3
𝑉𝑖𝑇 , 𝒛4

𝑉𝑖𝑇 , 𝒛5
𝑉𝑖𝑇] ∈  ℝ𝑁×1024. 

Hypergraph Association Module 

The feature representations of spots at each latent stage are derived by encoding histology images through the 

model's front-end image encoder, which encompasses the GEM, Backbone, CBAM, and ViT modules. 

However, the above modules are limited to treating the features of each stage independently and do not explore 

the association among the multiple latent stage features [𝒛3
𝑉𝑖𝑇 , 𝒛4

𝑉𝑖𝑇 , 𝒛5
𝑉𝑖𝑇]. Herein, we first fuse the multiple 

latent feature maps described above, and then introduce a Hypergraph Association Module (HAM) aimed at 

capturing high-order association among spots. To comprehensively model feature associations at varying 

distances, we adopt a global modeling approach based on Euclidean distance and a local modeling approach 

based on nearby positions. 



Specifically, with the summed element by element of [𝒛3
𝑉𝑖𝑇 , 𝒛4

𝑉𝑖𝑇 , 𝒛5
𝑉𝑖𝑇], 𝑯𝑖𝑛 ϵ ℝ𝑁×1024  is obtained and fed into 

the HAM. We use 𝒗𝑖 as the node and the attributes of the node 𝒗𝑖 is 𝒎𝑖 ϵ ℝ1×1024. To establish hyperedges 

among nodes, we propose a method that combines Euclidean distance and nearby positions metrics to generate 

an incidence matrix. Initially, we measure the Euclidean distance between the current node 𝒗𝑖  and other nodes. 

This effectively models relationships between distant nodes 𝒗𝑖  and 𝒗𝑗: 

Dis(𝒗𝑖 , 𝒗𝑗) = √ ∑ (𝒎𝑖𝑘 − 𝒎𝑗𝑘)
2

1024

𝑘=1

 .      (14) 

Simultaneously, considering that neighboring nodes on the coordinates usually have similar genetic 

phenotypes, we also build hyperedges based on the positional relationship between nodes. Assume that the 

coordinates of node 𝒗𝑖 are (𝑥𝑖 , 𝑦𝑖) and the coordinates of node 𝒗𝑗 are (𝑥𝑗 , 𝑦𝑗), the positional relationship is 

encoded as: 

Pos(𝒗𝑖 , 𝒗𝑗) = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

  .      (15) 

By combining the two aforementioned metrics, we establish the relationship between the current node and 

other nodes. To ensure a balanced contribution of the two metrics to the final incidence matrix, normalization 

method is applied: 

Inc_Mat(𝒗𝑖 , 𝒗𝑗) = Norm(Dis(𝒗𝑖 , 𝒗𝑗)) +  Norm(Pos(𝒗𝑖 , 𝒗𝑗)) .       (16) 

Next, the incidence matrix and features 𝑯𝑖𝑛 ϵ ℝ𝑁×1024  are input into a hypergraph convolutional network. 

Throughout the convolution process, the model enhances its understanding of inter-node dependencies, 

encompassing relationships among nodes as well as between nodes and hyperedges. For the concrete 

implementation of hypergraph convolution39, 40, this study leverages the HypergraphConv module from the 

torch_geometric library: 

𝑯𝑡𝑚𝑝 =  HypergraphConv(𝑯𝑖𝑛 , 𝒗𝑖 , 𝒎𝑖 ) ,         (17)  

𝑯𝑜𝑢𝑡 =  Dropout (Norm (ReLU(𝑯𝑡𝑚𝑝))).        (18) 

The output feature obtained after the HAM module is 𝑯𝑜𝑢𝑡 ϵ ℝ𝑁×1024. 

 Finally, to obtain the final gene prediction, a Long Short-Term Memory (LSTM) module and MLP module 

are introduced in this paper. LSTM models the association among features by treating the input multiple latent 

stage features as time series. The features of the four stages [𝒛3
𝑉𝑖𝑇 , 𝒛4

𝑉𝑖𝑇 , 𝒛5
𝑉𝑖𝑇 , 𝑯𝑜𝑢𝑡] are concatenated together 

to obtain 𝑳𝒊𝒏 ϵ ℝ4×𝑁×1024, which is used as an input to the LSTM. Subsequently, the first dimension of the 

LSTM output features is average pooled to obtain the average vector 𝑳𝒐𝒖𝒕 ϵ ℝ𝑁×1024. Finally, MLP is used to 

map the latent feature 𝑳𝒐𝒖𝒕 ϵ ℝ𝑁×1024 to the number of final predicted genes, which is ℝ𝑁×785 for HER2+ and 

ℝ𝑁×171 for cSCC dataset. 

Model hyperparameter configuration. The hyperparameters used in the HGGEP model are listed 

specifically. (1) GEM: the parameter θ in Equation 2 is set to 0.7 and the feature channel variations progress 

from 3→6→3. (2) The backbone network: we utilize the shufflenet_v2_x0_5 model, pre-trained on the 

ImageNet dataset, to extract features from the final three stages for subsequent modules. (3) CBAM: the 

scaling factor in the channel attention in Equation 6 is configured to shrink by 16 ×. Subsequently, for ease 

of subsequent processing, we reduce these features from the last three stages to ℝn×1024, where n represents 

the number of spots. (4) ViT: the whole ViT module is iterated four times. The number of attention heads is 

set to 8, and the FeedForward component includes 2 MLP layers. (5) HAM: when constructing the incidence 

matrix, a fixed number of adjacent nodes is set to 3, and nodes retain their own indices. The convolution 

process involves 2 layers of hypergraph convolution, with the hidden layer being half the size of the input. (6) 

LSTM: This encompasses input and hidden state dimensions of 1024 each, along with a layer count of 4. (7) 

MLP: After output normalization, a single MLP layer is directly employed to predict the final gene output. 

Loss function. Mean Squared Error (MSE) loss is utilized to measure the average squared difference between 

the predicted gene expression values and the ground truth for each gene. Meanwhile, given the prevalent zeros 



in the spatial transcriptomics data, we also include the Zero-Inflated Negative Binomial (ZINB 41) loss. This 

loss is rooted in the zero-inflated negative binomial distribution, amalgamating the negative binomial 

distribution with a zero-inflation component. The total loss of the HGGEP model is a fusion of MSE and ZINB 

loss, for the task of gene prediction from histology images. 

Evaluation Metrics. Pearson Correlation Coefficient (PCC) is used to assess the performance of 

benchmarking models. This coefficient, a statistical measure for assessing the linear relationship between two 

continuous variables, is widely employed to quantify the strength and direction of the linear correlation 

between these variables. The PCC ranges from -1 to 1, with the progression from -1 to 1 indicating a shift 

from negative to positive correlation. The specific calculation method is as follows:  

𝑃𝐶𝐶 =
∑ (𝒙𝑖 − 𝒙)(𝒚𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝒙𝑖 − 𝒙)2 ∑ (𝒚𝑖 − �̅�)2𝑛
𝑖=1

𝑛
𝑖=1

        (19) 

, where 𝒙  and  �̅�  represent the means of variables x and y, respectively, and 𝒙𝑖  and 𝒚𝑖  denote the 𝑖𝑡ℎ 

observations. 

Training parameters. During training, the model utilizes a learning rate of 0.00001, runs for a maximum of 

400 epochs, and undergoes testing every 5 epochs. The experiments are conducted on an Ubuntu 20.04 system 

equipped with 128GB of RAM and an A6000 GPU featuring 48GB of memory. 

CODE AVAILABILITY 

All source codes and trained models in our experiments have been deposited at https://github.com/QSong-

github/HGGEP. 

DATA AVAILABILITY 

The spatial transcriptomics datasets used in this study include the (1) HER2-positive breast tumor ST datasets, 
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