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Weakly supervised crowd counting involves the regression of the number of individuals present in an image,
using only the total number as the label. However, this task is plagued by two primary challenges: the large
variation of head size and uneven distribution of crowd density. To address these issues, we propose a novel
Hypergraph Association Crowd Counting (HACC) framework. Our approach consists of a new multi-scale
dilated pyramid module that can efficiently handle the large variation of head size. Further, we propose a novel
hypergraph association module to solve the problem of uneven distribution of crowd density by encoding
higher-order associations among features, which opens a new direction to solve this problem. Experimental
results on multiple datasets demonstrate that our HACC model achieves new state-of-the-art results.
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1 INTRODUCTION

Given the pressing needs of social security, crowd counting has emerged as a topic of increasing
interest to both academia and industry. With frequent occurrences of crowd gathering in various
public places such as station halls, terminal buildings, cinemas, and shopping malls, crowd count-
ing plays a critical role in ensuring safety, managing traffic, and planning spatial arrangements
in these settings. Moreover, the crowd counting model can be readily extended to other domains
such as vehicle counting [4, 42], cell counting [15, 23], and crowd video analysis [21].
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Fig. 1. The main problems in crowd counting: the large variation of head size; (a) and the uneven distribution

of crowd density (b). Best viewed in red boxes.

The task of crowd counting faces two primary challenges: the large variation of head size and the
uneven distribution of crowd density, as shown in Figure 1. The former is primarily due to the phe-
nomenon of near large and far small, whereas the latter is attributed to the fact that crowds tend to
aggregate. To address these issues, researchers have developed a variety of effective methods that
can be broadly categorized into three groups: detection-based [30, 47], regression-based [25, 67],
and Convolutional Neural Network (CNN)-based methods [20, 37]. Among these, CNN-based
methods have been widely studied and have achieved significant success in recent years. The
current CNN-based crowd counting approaches can be divided into two branches: strongly super-
vised and weakly supervised. Strongly supervised methods require detailed point-level annotation
information about the head position of each individual, whereas weakly supervised methods only
require total count information.

Strongly supervised crowd counting methods utilize density maps [32] as prior information,
transforming the task from an image-to-number relationship to an image-to-image mapping
problem. To address the issue of the large variation of head size, researchers typically use multiple
parallel network branches to provide features with different receptive fields [5, 59, 64, 81]. How-
ever, Li et al. [36] have demonstrated that the features learned by these multiple branches are often
similar, as seen in the case of Multi-Column Convolutional Neural Network (MCNN) [81]. To
overcome this limitation, some researchers have utilized Inception [63] and its variants [6, 76, 78]
to extract multi-scale information, which have fewer parameters and greater aggregation power.
As an example, the MSCNN [78] model employs four parallel convolutional branches with kernel
sizes of 3, 5, 7, and 9 to extract features. However, such methods have two primary drawbacks.
First, traditional convolutional operations may impede dense prediction tasks and result in the
loss of spatial information within features [8, 9, 44]. Second, in general, using larger convo-
lution kernels increases computational cost and requires more parameters and computational
workload.

To address the issue of the uneven distribution of crowd density, some crowd counting methods
adopt patch-based processing or attention mechanisms to focus on dense regions of the image
[3, 20, 53, 54, 83, 84]. However, these methods require point-level annotations of head positions,
which can be costly and unnecessary for evaluation in the testing stage [37]. In contrast, weakly
supervised crowd counting methods only require total head count as supervision information, mak-
ing them more suitable for real-world scenarios. Recently, Liang et al. [37] introduced transform-
ers to weakly supervised crowd counting and achieved substantial performance improvements.
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Fig. 2. The disparities in construction methods and heatmaps between graphs and hypergraphs. In certain

crowd counting scenarios, the appearance of local crowds in clusters with similar characteristics is a com-

mon occurrence. To achieve a holistic representation of these local clusters in an image, a methodology that

can concurrently aggregate multiple node features is necessary. Nevertheless, this goal poses a challenge

for traditional graph techniques, as they only utilize pairwise connections between data nodes. Conversely,

hypergraph techniques provide degree-free hyperedges, enabling the simultaneous aggregation and repre-

sentation of multiple node features, which aligns with our need for representing local clusters. Consequently,

hypergraphs provide a more reasonable heatmap, which proves to be a difficult task to accomplish with

graphs.

Furthermore, CrowdFormer [55] enhanced counting performance by fusing features from various
levels in the transformer backbone to generate multi-scale features with contextual information.
However, there is still a performance disparity between weakly and strongly supervised methods,
and none of these methods have addressed the issue of uneven distribution of crowd density.

Although the CNN-based methods discussed previously have yielded promising crowd count-
ing results, there remain two challenges. First, the uniform transformation in CNNs struggles to
model the relationships among features. Second, the local receptive domain, which limits the fea-
ture aggregation capability, cannot accommodate complex topologies. To address these issues, re-
searchers have incorporated graphs into CNNs, giving rise to Graph Convolutional Networks

(GCNs) [2, 13, 29]. GCNs can better represent input data by encoding graph structures and aggre-
gating relevant information from a global perspective. This approach overcomes the limitations
of feature aggregation to the local receptive domain and enhances joint feature characterization.
However, classical GCNs only utilize pairwise connections between data nodes, which cannot cap-
ture the complex relational representations required in practical scenarios. In the context of crowd
counting, local crowds frequently cluster together and exhibit similar characteristics. To represent
these local clusters holistically, a methodology that can simultaneously aggregate multiple node
features is required. However, traditional CNNs and GCNs struggle to achieve this objective. The
HyperGraph Neural Network (HGNN) [18], which introduces degree-free hyperedges, can ag-
gregate and represent multiple node features simultaneously. This feature aligns with the need
to represent local clusters in crowd counting scenarios, as shown in Figure 2. We have therefore
introduced the HGNN method and applied it to crowd counting. However, most existing HGNN-
based methods [18, 27, 51] use a simple Euclidean distance between nodes to construct hyperedges,
which cannot accommodate complex semantic associations among features.

This article proposes a new weakly supervised Hypergraph Association Crowd Counting

(HACC) framework, which consists of a Multi-scale Dilated Pyramid (MDP) module and a
new Hypergraph Association (HA) module. To effectively capture multi-level information on
the feature map, an MDP module is designed with varying dilated rates, which preserves the spatial
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structure information of features while minimizing computational costs. Additionally, to address
the issue of uneven crowd density, we introduce HGNN into the field of crowd counting, which
models the relationship among features. Moreover, we propose a new HA module, which builds
hypergraphs based on Euclidean distance and learnable similarity association. Our experiments
show that the module can achieve scene understanding.

The main contributions of this article are summarized as follows:

• To effectively address the problem of the large variation of head size, we design an MDP
module to capture multi-scale features while retaining the internal structure of the features
to the greatest extent.
• To overcome the challenge of uneven distribution of crowd density, we introduce HGNNs

to the crowd counting domain for the first time. Furthermore, we propose a novel HA mod-
ule that leverages both Euclidean distances and learnable similarity associations to better
capture the correlations among individuals.
• We conduct extensive experiments on various benchmark datasets, including JHU-

CROWD++, Shanghai Tech A/B, UCF-QNRF, and UCF_CC_50. The experimental results
demonstrate that our proposed HACC model outperforms state-of-the-art methods.

The article is organized as follows. We discuss the related works in Section 2, and the proposed
HACC model is discussed in detail in Section 3. Section 4 shows the experimental results and
analysis, Section 5 develops a discussion of the hypergraph module, and finally, Section 6 presents
our conclusion and outlook.

2 RELATED WORKS

In this section, we briefly discuss the research status of strongly supervised, weakly supervised,
and graph-based crowd counting works.

2.1 Strongly Supervised Crowd Counting

In addressing the problem of uneven distribution of crowd density, two strongly supervised ap-
proaches are commonly employed: patch-based and attention-based methods. Patch-based meth-
ods partition the image into multiple patches and process each patch using specialized techniques
[3, 53, 54]. These methods utilize multi-branch networks with varying receptive fields, and a classi-
fication network determines which branch network processes each patch. In this way, the process-
ing methods of patches with different densities are diverse. However, these methods are ineffective
at handling uneven density distributions within each patch and do not address the issue fundamen-
tally. Alternatively, attention-based methods employ the attention mechanism for densely popu-
lated areas [20, 83, 84]. These methods typically consist of two modules: channel attention, which
extracts the most significant features from the channels, making the model more resilient to noisy
backgrounds, and spatial attention, which enables the model to focus on the crowded areas of the
image.

The efficacy of crowd counting techniques that rely heavily on comprehensive point-level su-
pervision is notable. However, in practical settings, such supervision may not always be readily
available, thus impeding the broader applicability of these methods. Consequently, researchers are
endeavoring to transition to count-level annotation as an alternative approach.

2.2 Weakly Supervised Crowd Counting

Lei et al. [31] have introduced MATT (Multiple Auxiliary Tasks Training), an effective yet straight-
forward training strategy to impose constraints on the generated density maps. In the absence of
point-level annotations, Yang et al. [77] have presented a soft label classification network and a
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counting network that classify images based on the number of individuals present in each im-
age. More recently, Liang et al. [37] have incorporated transformers into weakly supervised crowd
counting by leveraging ViT (the Vision Transformer [14]) as the backbone network to capture
global semantic information, whereas a simple regression head is employed to predict crowd num-
bers. Tian et al. [65] have proposed the CCTrans method, which leverages a pyramid vision trans-
former to extract multi-level features and a simple multi-scale atrous convolution regression head
to estimate the crowd number. Similarly, Savner and Kanhangad [55] have introduced the Crowd-
Former method, which employs a pyramid structured vision transformer to extract multi-scale
features with global context and combines them to estimate the crowd number.

Despite the cost reduction achieved by count-level annotation-based weakly supervised crowd
counting methods, their performance still falls short of achieving results comparable to those of
strongly supervised counting methods.

2.3 Graph-Based Crowd Counting

Luo et al. [50] have pioneered the application of HyGNN (Hybrid GNN) to mine the relationship
between crowd localization and crowd counting within a single image. This approach views the
feature maps of varying scales as nodes and identifies two types of relations as edges. By con-
tinuously aggregating and updating node features, HyGNN can capture richer associations and
achieve stronger representation capabilities. Chen et al. [10] have devised a region relationship
sensing module based on GNNs to identify and explore relationships among regions with differ-
ent densities. Li et al. [34] have introduced GGRNet (the Graph-based Global Reasoning Network),
which leverages GGRU (the Graph-based Global Reasoning Unit) to reason about context infor-
mation from the features obtained through VGG-16. Furthermore, Zhai et al. [79] have proposed
a graph-based multi-view learning model named CoCo-GCN (the Co-Communication Graph Con-
volutional Network) for multi-view crowd counting. This approach jointly investigates contextual
dependencies and captures complementary relationships across different views.

The preceding works have demonstrated effective performance in crowd counting through the
utilization of robust node feature representation ability of the Graph Neural Network (GNN).
However, it is important to note that the representation capability of these models is restricted
due to the inherent limitation of the GNN, which only allows for pairwise connections between
nodes. As a result, it is not possible to accurately capture higher-order association relationships,
as illustrated in Figure 2.

3 OUR METHOD

The overview of our HACC method is shown in Figure 3. It mainly contains three modules: the
transformer backbone, MDP module, and HA module. First, an image is input into the backbone
network based on the Swin transformer [48] and Feature Pyramid Network (FPN) [41] to ex-
tract feature information at various stages. By concatenating features from different stages, we
obtain the original feature map with global semantic information and local fine-grained informa-
tion. Second, the MDP module is designed to capture information at different levels of the same
feature map, using different dilated rates but with the same depth. Finally, a 1 × 1 convolution is
applied to adjust the channels of the structural feature map, which is then fed into the HA module
to model the correlation among features.

3.1 Transformer Backbone

The transformer backbone is built based on the Swin transformer [48] and FPN [41] structure. The
Swin transformer is a hierarchical vision backbone that has found widespread use in various down-
stream vision tasks. It consists of four stages that produce output feature maps with decreasing
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Fig. 3. The framework of HACC. It comprises three primary modules: a transformer backbone, an MDP

module, and a HA module. Initially, the image features are fed through the transformer backbone, and the

resulting features of the four stages are concatenated to create an original feature map that contains both

global and local information. Subsequently, the MDP module is utilized to capture features at various lev-

els and preserve the spatial information of these features. The HA module is then employed to model the

association among these features, thereby facilitating scene understanding. Finally, a straightforward linear

mapping is applied to the feature map to generate the predicted number of individuals.

resolution. Its primary innovation is the application of the sliding window concept to the trans-
former. This involves using non-overlapping local windows and overlapping cross windows to
limit the most expensive attentional computations in the transformer to a single window. This
approach introduces locality to the convolution operation while also significantly reducing the
amount of computation cost. FPN, however, aims to construct feature maps of different scales by
utilizing a top-down and laterally connected network structure, which incorporates global image
information into low-level features. To achieve this, we input the feature maps produced by the
four stages of transformer into the corresponding level of FPN for information fusion. Since the
FPN structure increases the model’s parameters, we use group convolution (with four groups) to
reduce the number of parameters. Finally, we merge the features output by the FPN structure at
different levels to obtain a feature representation that contains both global and fine-grained infor-
mation. We then input this representation into the MDP module to extract a multi-level feature
structured representation.

3.2 MDP Module

Upon obtaining the feature map outputted by the transformer backbone, both global and local fine-
grained features are initially acquired. To capture features at various levels and maintain the spatial
information of features to some extent, the features from different stages are stacked together.
Moreover, in contrast to traditional large kernel convolution, dilated convolution can increase
the receptive field while preserving the spatial structure information of the features, while also
decreasing computational costs. Therefore, the MDP module is devised, utilizing different dilated
rates to acquire varying levels of information from the feature map.

To be specific, the feature map’s channel number is first adjusted, after which it is inputted
into the multi-scale dilated convolution. Drawing inspiration from previous works [8, 9, 35, 44],
we design four dilated convolution branches with varying receptive fields to capture objects of
different scales. In contrast to object detection scenarios, crowd counting scenarios often involve a
large number of small-sized heads, which we believe necessitates prioritizing fine-grained features
for accuracy. Therefore, we set the dilated rates of the four branches to be smaller (1, 2, 3, and 4),
allowing the network to capture features of different scales, mitigate the issue of large variations
of head size, and avoid the grid effect [17]. As shown in Figure 4, the MDP module leverages four
branches with different dilated rates to capture objects of varying scales in the original feature map.
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Fig. 4. Hierarchical correspondence representation between the MDP module and feature map. The module

employs multiple branches with different dilated rates of 1, 2, 3, and 4 to capture heads of various scales

within the feature map. By utilizing this approach, the spatial structure and hierarchy information of the

features are preserved.

Additionally, given the small and densely packed nature of heads in crowd counting scenarios, we
emphasize the importance of low-level, fine-grained features. Hence, we incorporate the output
of the branch with a dilated rate of 1 into the other three branches, further augmenting the fine-
grained information.

After obtaining the features from the aforementioned branches, we merge them and input them
into the HA module. Notably, the MDP module successfully preserves the data structure and spatial
hierarchy information of the features, which is advantageous for the subsequent HA module to
establish higher-order semantic associations among features, facilitating scene understanding.

3.3 HA Module

Further, our objective with the HACC model is to effectively identify key areas in complex counting
scenes, develop scene understanding capabilities, and address issues with uneven distribution of
crowd density. To this end, we introduce a novel HA module that jointly describes local individuals
with similar features in images by leveraging both Euclidean distance and learnable similarity
correlations among features.

Given a feature map as F ∈ RC×H×W , to generate a hypergraph, we first change the feature
dimension to F ∈ RN×N , and the grid of N ×1 is treated as a nodeVi with feather fi . Typically, the
association between node features in an image is stronger when the Euclidean distance between
them is smaller. Therefore, the similarity between two nodesVi andVj is initially measured using
the Euclidean distance, which is computed as follows:

Mdis =

√
|N |∑

( fi − fj )2, (1)

where N denotes the number of nodes in the feature map, and fi and fj refer to the feature vectors
corresponding toVi andVj , respectively. However, relying solely on the Euclidean distance metric
may not be sufficient to distinguish human heads from similarly backgrounds in some crowd count-
ing scenarios. To address this limitation, we propose a weighted cosine similarity approach. Cosine
similarity measures the angle between feature vectors rather than their absolute sizes, making it
more appropriate for high-dimensional feature spaces. Unlike Euclidean distance, cosine similarity
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is more sensitive to similarities between feature vectors and is thus more effective at mitigating
confusion between human heads and their surrounding backgrounds. The cosine similarity can be
calculated using the following equation:

Cos (Θ) =
fi f

T
j

| | fi | | · | | fj | |
. (2)

Building on previous works [22, 72, 74], our aim is to enable the model to learn the similarity
between features adaptively, allowing it to better capture the relationship between human heads
and similarly backgrounds. To achieve this, we introduce learnable parameters into the cosine
similarity equation. The resulting learnable cosine similarity Msim between nodes Vi and Vj is
represented as follows:

Sim( fi , fj ) =
( fiWi ) ( fjWj )

T

| fiWi |2 · | fjWj |2
, (3)

whereWi andWj are the learnable weights, and | |2 denotes the L2 norm. In summary, we combine
the Euclidean distance Mdis and the learnable cosine similarity Msim to measure the similarity
between node features. The association score between nodeVi andVj is denoted by

Mi j = α ×Mdis + β ×Msim . (4)

Furthermore, it is worth considering that the measurement methods for node features used to
calculate the similarity metrics,Mdis andMsim , may differ significantly. As a result, the two metrics
could exhibit a large discrepancy in their values, leading to the potential loss of the weighted effect
of one of them. To mitigate this issue, we propose to normalize Mdis and Msim separately using
the softmax function.

ALGORITHM 1: Hypergraph Construction

Input: Embedding X
Function: Construct hyperedge based on Euclidean distance and association relations.
1: Generate Msim according to Equation (3)
2: for m in X do
3: Mtmp = Eu_dis(m)
4: Mdis .append(Mtmp )
5: end for
6: M = α ×Mdis + β ×Msim

7: for i in range(len(M)) do
8: Htmp = Construct_H_with_KNN(M[i])
9: H .append(Htmp )
10: end for
Output: incidence matrix H

Subsequently, the nodes in Mi j are selected as centroids in turn and form a hyperedge with each
of the nine nodes with the maximum correlation score. By the preceding operation, the matrix H
is obtained, as shown in Algorithm 1, and then input it into a four-layer hypergraph convolution.
A complete hypergraph convolution layer is obtained by adding a non-linear activation function
to the hypergraph convolution operation, which can be expressed as

X l+ = σ
(
D−1/2

v HWD−1
e H�D−1/2

v X (l )Θ(l )
)
, (5)
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Fig. 5. The processing flow of the HA module.

whereX (l+) is the output of the l-th layer and σ is the ReLU function used for nonlinear activation.
Dv and De denote the diagonal matrix of vertex degrees and edge degrees, with each vertex degree
defined as d (v ) =

∑
e ∈E ω (e )h(v, e ) and each edge degree defined as δ (e ) =

∑
v ∈V h(v, e ). The role

of Dv and De can be simply summarized as normalizing incidence matrix H . Both W and Θ are
learnable parameters. Finally, considering that the optimized features X l+1 are too smooth, we
adopt them as attention weights to optimize the features:

X l+1 = Siдmoid (X l+) · X l . (6)

More specifically, the processing flow of the HA module is shown in Figure 5. First, for the
structural feature map X (l ) obtained from the MDP module, we utilize a liner layer to change
its dimension to RB×N×N . Second, the features are sent into the learnable similarity correlations
matrix Msim and distance matrix Mdis to generate the final matrix M based on Equation (4). Then
we can obtain the incidence matrix H using the nearest neighbor algorithm based on M . Third,
incidence matrixH and the featuresX l are sent to a four-layer hypergraph convolution to enhance
the representation ability of features. Finally, the refined feature map X (l+1) is output according to
Equation (6).

4 EXPERIMENT RESULTS AND ANALYSIS

4.1 Datasets and Experimental Details

The datasets in the field of weakly supervised crowd counting mainly include JHU-CROWD++
[57], Shanghai Tech A/B [81], UCF-QNRF [26], and UCF_CC_50 [25]. Next, we briefly describe the
characteristics of each dataset.
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The JHU-CROWD++ [57] dataset is an extension based on JHU-Crowd [61] and contains a total
of 4,372 images and 1.51 million instances with an average resolution of 910 × 1430. The dataset
contains some scenes under severe weather and lighting conditions, such as snow, rain, and haze,
and provides rich crowd head location annotations.

The Shanghai Tech [81] dataset is composed of two distinct parts, namely Part A and Part B,
which respectively depict dense and sparse crowd scenarios. Part A comprises a total of 482 images,
with an average resolution of 589 × 868, featuring approximately 240,000 instances. These images
were collected from various online sources. However, Part B contains 716 images, with a resolution
of 768 × 1024, portraying a total of 88,488 individuals. The images in Part B were obtained from
real-life shots of crowd scenes captured on the streets of Shanghai, China.

The UCF-QNRF [26] dataset consists of 1,535 images with an average resolution of 2013 × 2902.
There are approximately 1.25 million instances, including some extremely crowded scenes.

The UCF_CC_50 [25] dataset contains only 50 images with an average resolution of 2101× 2888
but has about 64,000 instances, which is a highly crowded dataset.

Since the Swin transformer only supports fixed-size images, all datasets are cropped to a uniform
size of 384 × 384. For datasets with varying original image sizes, we first resize them uniformly
to 1152 × 768 and subsequently crop them to the desired dimensions. During training, we utilize
horizontal flipping to augment the data and employ smooth L1 as the chosen loss function. The
model is optimized using Adam [28], with a batch size of 32 and an initial learning rate of 1e-5,
which decays to 1e-6 after 200 epochs. The experiments are conducted on an Ubuntu 20.04 platform
equipped with an NVIDIA GeForce RTX 3090 (with ∼24 GB of memory).

4.2 Evaluation Criteria

We evaluate the counting performance using Mean Absolute Error (MAE) and Root Mean

Squared Error (RMSE).

MAE =
1

m

m∑
i=1

|yi − ŷi |, (7)

RMSE =

√√
1

m

m∑
i=1

(yi − ŷi )2, (8)

wherem is the number of samples,yi is the number of ground truth, and ŷi is the predicted number
for the i-th sample.

4.3 Performance Comparison and Analysis

We have conducted a comprehensive set of experiments on four publicly available datasets to
demonstrate the effectiveness of our proposed approach. First, we compare the validation and test
sets of JHU-CROWD++, which comprises the largest amount of data, as presented in Tables 1 and 2.
Subsequently, we evaluate the performance of our method on the Shanghai Tech A/B, UCF-QNRF,
and UCF_CC_50 datasets, as outlined in Table 3. It is pertinent to note that, to provide a more
intuitive understanding of the performance of weakly supervised crowd counting methods, we
have also compared our results with popular strongly supervised approaches, where the location
information is specified in the label column of the table.

Our proposed HACC model demonstrates superior performance over current state-of-the-art
methods on the JHU-CROWD++ dataset. In particular, both the val and test sets of JHU-CROWD++
are stratified into three distinct sub-datasets, each representing crowd scenes with varying den-
sities. We evaluate the performance of our HACC model under different counting scenarios and
report the results in Table 1. Additionally, we test our model on the entire dataset and also report
the performance of the best model on the validation set in Table 2. Hence, Table 1 provides
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Table 1. Quantitative Results on the JHU-CROWD++ (Val Set)

Method Venue
Label Low Medium High Overall

L N MAE RMSE MAE RMSE MAE RMSE MAE RMSE
MCNN [81] CVPR16 � � 90.6 202.9 125.3 259.5 494.9 856.0 160.6 377.7
CMTL [58] AVSS17 � � 50.2 129.2 88.1 170.7 583.1 986.5 138.1 379.5

DSSI-Net [43] ICCV19 � � 50.3 85.9 82.4 164.5 436.6 814.0 116.6 317.4
CAN [45] CVPR19 � � 34.2 69.5 65.6 115.3 336.4 619.7 89.5 239.3
SANet [7] ECCV18 � � 13.6 26.8 50.4 78.0 397.8 749.2 82.1 272.6

CSRNet [36] CVPR18 � � 22.2 40.0 49.0 99.5 302.5 669.5 72.2 249.9
MBTTBF [60] ICCV19 � � 23.3 48.5 53.2 119.9 294.5 674.5 73.8 256.8

SFCN [71] CVPR19 � � 11.8 19.8 39.3 73.4 297.3 679.4 62.9 247.5
BL [52] ICCV19 � � 6.9 10.3 39.7 85.2 279.8 620.4 59.3 229.2

CG-DRCN [57] TPAMI20 � � 17.1 44.7 40.8 71.2 317.4 719.8 67.9 262.1
TC-Token [37] SCIS22 ✗ � 7.1 10.7 33.3 54.6 302.5 557.4 58.4 201.1
TC-GAP [37] SCIS22 ✗ � 6.7 9.5 34.5 55.8 285.9 532.8 56.8 193.6
HACC (ours) – ✗ � 4.7 6.9 26.5 40.4 238.7 501.9 48.8 186.3

The smaller the MAE and RMSE metrics, the better the performance. “L” and “N”indicate location and number,

respectively. “Low,” “Medium,” and “High” respectively indicate three categories based on different ranges: [0,50],

(50,500], and 500+.

Table 2. Quantitative Results on the JHU-CROWD++ (Test Set)

Method Venue
Label Low Medium High Overall

L N MAE RMSE MAE RMSE MAE RMSE MAE RMSE
MCNN [81] CVPR16 � � 97.1 192.3 121.4 191.3 618.6 1,166.7 188.9 483.4
CMTL [58] AVSS17 � � 58.5 136.4 81.7 144.7 635.3 1,225.3 157.8 490.4

DSSI-Net [43] ICCV19 � � 53.6 112.8 70.3 108.6 525.5 1,047.4 133.5 416.5
CAN [45] CVPR19 � � 37.6 78.8 56.4 86.2 384.2 789.0 100.1 314.0
SANet [7] ECCV18 � � 17.3 37.9 46.8 69.1 397.9 817.7 91.1 320.4

CSRNet [36] CVPR18 � � 27.1 64.9 43.9 71.2 356.2 784.4 85.9 309.2
MBTTBF [60] ICCV19 � � 19.2 58.8 41.6 66.0 352.2 760.4 81.8 299.1

SFCN [71] CVPR19 � � 16.5 55.7 38.1 59.8 341.8 758.8 77.5 297.6
BL [52] ICCV19 � � 10.1 32.7 34.2 54.5 352.0 768.7 75.0 299.9

CG-DRCN [57] TPAMI20 � � 19.5 58.7 38.4 62.7 367.3 837.5 82.3 328.0
AutoScale [75] IJCV21 � � 13.2 30.2 32.3 52.8 425.6 916.5 85.6 356.1
D2CNet [12] TIP21 � � 12.6 38.5 36.5 56.3 330.3 748.6 73.7 292.5

GL [66] CVPR21 � � – – – – – – 59.9 259.5
TopoCount [1] AAAI21 � � 8.2 20.5 28.9 50.0 282.0 685.8 60.9 267.4

CLTR [38] ECCV22 � � 8.3 21.8 30.7 53.8 265.2 614.0 59.5 240.6
ChfL [56] CVPR22 � � – – – – – – 57.0 235.7
MAN [40] CVPR22 � � – – – – – – 53.4 209.9

TC-Token [37] SCIS22 ✗ � 8.5 23.2 33.3 71.5 368.3 816.4 76.4 319.8
TC-GAP [37] SCIS22 ✗ � 7.6 16.7 34.8 73.6 354.8 752.8 74.9 295.6

CrowdMLP [70] Arxiv22 ✗ � – – – – – – 67.6 256.2
DMCNet [69] WACV23 ✗ � – – – – – – 69.6 246.9
HACC (ours) – ✗ � 6.8 18.0 28.9 46.0 299.2 632.8 63.2 246.7

The smaller the MAE and RMSE metrics, the better the performance.

insights into the exceptional performance of our model under extreme density counting scenarios,
whereas Table 2 presents the comprehensive performance of our model across all scenarios. Our
HACC model’s performance on the UCF-QNRF, Shanghai Tech A/B, and UCF_CC_50 datasets is
also presented in Table 3, which further corroborates the competitiveness of our approach.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 6, Article 195. Publication date: July 2023.

Boom
高亮

Boom
高亮



195:12 B. Li et al.

Table 3. Performance of the HACC Model on the Three Datasets of Shanghai Tech A/B (SHTA and

SHTB), UCF-QNRF, and UCF_CC_50

Method Venue
Label SHTA SHTB UCF-QNRF UCF_CC_50

L N A S A S A S A S
MCNN [81] CVPR16 � � 110.2 173.2 26.4 41.3 277.0 426.0 377.6 509.1

Switching [3] CVPR17 � � 90.4 135.4 21.6 33.4 – – 318.1 439.2
CSRNet [36] CVPR18 � � 68.2 115.0 10.6 16.0 – – 266.1 397.5
SFCN [71] CVPR19 � � 64.8 107.5 7.6 13.0 102.0 171.4 214.2 318.2
AEDN [80] TOMM20 � � 63.8 106.8 8.1 13.4 123.0 198.0 255.0 330.5

HyGNN [50]† AAAI20 � � 60.2 94.5 7.5 12.7 100.8 185.3 184.4 270.1
TopoCount [1] AAAI21 � � 56.9 95.2 6.5 10.6 87.3 142.4 – –

P2PNet [82] ICCV21 � � 52.7 85.1 6.3 9.9 85.3 154.5 172.7 256.2
D2CNet [12] TIP21 � � 57.2 93.0 6.3 10.7 81.7 137.5 182.1 254.9
SASNet [62] AAAI21 � � 53.6 88.4 6.4 9.9 85.2 147.3 161.4 234.5

CCTrans [48] Arxiv21 � � 52.3 84.9 6.2 9.9 82.8 142.3 168.7 234.5

FIDTM [39] TMM22 � � 57.0 103.4 6.9 11.8 89.0 153.5 – –
CLTR [38] ECCV22 � � 61.2 104.6 7.8 13.7 89.0 159.0 184.1 258.3
MAN [40] CVPR22 � � 56.8 90.3 – – 77.3 131.5 – –
ChfL [56] CVPR22 � � 57.5 94.3 6.9 11.0 80.3 137.6 – –

Yang et al. [77] ECCV20 ✗ � – – 12.3 21.2 104.6 145.2 – –
MATT [31] PR21 ✗ � 80.1 129.4 11.7 17.5 – – 355.0 550.2

CCTrans [65] Arxiv21 ✗ � 64.4 95.4 7.0 11.5 92.1 158.9 245.0 343.0
TC-GAP [37] SCIS22 ✗ � 66.1 105.1 9.3 16.1 97.2 168.5 – –

CrowdFormer [55] arxiv22 ✗ � 62.1 94.8 8.5 13.6 93.3 160.9 229.6 360.3
JCTNet [68] Arxiv22 ✗ � 62.8 95.6 7.2 11.5 90.0 161.0 222.9 306.5

DMCNet [69] WACV23 ✗ � 58.5 84.6 8.6 13.7 96.5 164.0 – –
HACC (ours) – ✗ � 58.3 84.6 7.5 11.8 92.9 168.7 220.4 338.2

The smaller the MAE and RMSE metrics, the better the performance. To be more intuitive, we bold and underline the

best and second best performing models, respectively. The method based on the GNN is marked with a dagger (†). “A”

and “S” denote MAE and RMSE, respectively.

To analyze the performance of the HACC model, we distinguish between dense and sparse
counting scenarios. The HACC model shows outstanding performance on crowded datasets, such
as Shanghai Tech A, JHU-CROWD++ (high sub-dataset), UCF-QNRF, and UCF_CC_50. This re-
markable performance is mainly attributed to the MDP module and the HA module. The MDP
module uses multiple branch networks with different dilated rates, allowing the model to effec-
tively capture small-scale counted objects in dense scenes. Additionally, the output of the branch
with a dilated rate of 1 is superimposed onto the other three branches to further strengthen the un-
derlying feature information. Furthermore, the HA module enables the model to perceive densely
crowded areas in the counting scene, thereby improving the accuracy of counting in crowded ar-
eas, which is particularly evident in dense datasets. To intuitively understand the contribution
of the HA module, we visualize the attention heatmap of the network in Section 5. On datasets
with lower density, such as JHU-CROWD++ (low and medium subsets) and Shanghai Tech B, our
model does not exhibit significant advantages in performance. We infer that the distance among
individuals in low-density datasets is relatively large, making it challenging for the HA module to
establish relatively long-distance associations.

4.4 Ablation Experiments

To assess the individual contribution of each module and its key components to the HACC model,
we conducted ablation experiments on Shanghai Tech A/B. First, we evaluated the effectiveness
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Table 4. Ablation Experiments of the HACC Model on Shanghai Tech A/B

(SHTA and SHTB) Mainly Include the MDP Module and Its BS Operation

and Hypergraph (Association) Module

Bone MDP BS HGNN HA
SHTA SHTB

MAE RMSE MAE RMSE
� 64.3 99.5 9.4 15.4
� � 63.2 99.9 8.3 13.9
� � � 62.8 98.8 8.2 13.5
� � � � 61.7 96.6 8.0 12.7
� � � � 58.3 84.6 7.5 11.8

of the MDP module and the Branch Stacking (BS) with a dilated rate of 1 onto the other three
branches. Subsequently, we examined the contribution of the HA module. To distinguish the perfor-
mance between the HA module and the traditional HGNN, we conducted experiments by replacing
the HA module with HGNN while keeping other parameters constant during training.

After conducting ablation experiments on the MDP module and the HA module separately at
Shanghai Tech A/B, we obtained the results shown in Table 4. The results indicate that the MDP
module and its BS operations can improve the performance of the HACC model. Moreover, we
observe that introducing the traditional HGNN does improve the counting performance, albeit
to a limited extent. However, the performance improvement of the HA module is significant on
Shanghai Tech A, but only slight on Shanghai Tech B. This result aligns with our theory that dense
individuals are more likely to establish associations among features.

To further investigate the effectiveness of the HA module, we conducted ablation experiments
on some hyperparameters in the hypergraph construction process, including α and β in Equa-
tion (4). The hyperparameters α and β determine the relative weights of the distance matrix
Mdis and the learnable similarity correlation matrix Msim , which greatly influence the basis for
hypergraph construction. To fully explore the effect of these parameters, we varied one parameter
from 0 to 1 while keeping the other at 1. The experimental results are shown in Figure 6. Our
observations are as follows: (1) the performance in Figure 6(a) is generally better than that in
Figure 6(b), indicating that the larger the weight of Msim , the better the performance; (2) when
either α or β is zero, the performance decreases significantly, indicating that the fusion of Mdis

and Msim outperforms using a single matrix; and (3) the best counting performance is achieved
when α = 0.4 and β = 1. Furthermore, we conducted ablation experiments on the number of
neighboring nodes in the hyperedge construction process, and the results on the Shanghai Tech
A dataset are shown in Table 5. As the number of nodes increases, a single hyperedge can better
capture local features, thereby increasing its characterization ability and leading to progressively
stronger counting performance of the model.

4.5 Computational Cost

The computational cost of a model is a crucial factor that affects its practical application. Typically,
this factor is evaluated by considering the number of GFLOPs and model parameters. In this study,
we have selected recent methods for comparison and present the results in Table 6. As can be
observed, the overall computational cost of our HACC model is relatively small, making it suitable
for further applications. First, the computational cost of CCST and DCST is comparable to our
HACC model. This similarity is because we have all adopted the expensive Swin transformer as the
backbone of our models. Second, due to the multi-branch design, our MDP module is also slightly
expensive in computation. Finally, the computational cost of the HA module mainly arises from
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Fig. 6. Ablation experiments of hyperparameters affecting the relative weights of the distance matrix Mdis

and the learnable similarity correlation matrix Msim . (a) Variation in counting performance as α changes

from 0 to 1 when β = 1. (b) Variation in counting performance as β changes from 0 to 1 when α = 1.

Table 5. Ablation Experiments on the Number

of Neighboring Nodes in the Hyperedge

Construction Process

3 6 9 12 15
MAE 58.9 58.6 58.3 58.2 58.3
RMSE 85.9 85.2 84.6 85.6 84.6

Table 6. Comparison of the Computational Cost of Different Models

CCST DCST SASNet P2PNet GAP HACC

GFLOPs 323.6 154.8 130.9 58.8 49.3 103.9

Params 294.7 252.3 38.9 19.2 89.1 199.0

We measure GFLOPs with 384 × 384 resolution images as input. Works

compared to HACC (we have bolded it) include CCST [33], DCST [19], SASNet

[62], P2PNet [82], and TransCrowd-GAP (GAP) [37].

the calculation of the nearest neighbors. However, the overall cost of the HA module is relatively
small, making it ideal for future research applications.

5 DISCUSSION ON THE HA MODULE

To gain a better understanding of the HA module, we conducted further analysis. We visualized
the attention heatmap to demonstrate the effect of the HA module on scene understanding, as
presented in Figure 7. The visualization reveals that our HA module helps the model perceive the
distribution of crowds in the scene, which is advantageous for scene understanding. Furthermore,
as the preceding scene understanding effect is similar to that of the attention mechanism, we
compared the effect of the HA module with that of the attention mechanism. The visualization of
the heatmap is illustrated in Figure 8, and the model performance is shown in Table 6.

5.1 Attention Heatmap

To gain an intuitive understanding of the effect of the HA module, we visualized the network
attention heatmaps before and after the module. Additionally, we trained a counting model based
on the traditional HGNN while keeping other conditions constant to verify the improvement of our
HA module relative to the HGNN. The results are presented in Figure 7. The first row of the three
rows shows the heatmap before the hypergraph module, the middle row depicts the heatmap of
HGNN, and the last row displays the heatmap of our proposed HA. Two conclusions can be drawn
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Fig. 7. The visualization results of the attention heatmap before and after the hypergraph (association) mod-

ule. The first row is the heatmap before the hypergraph module, the middle is the heatmap of the HGNN,

the last is the heatmap of HA. Best viewed in red boxes.

Fig. 8. Comparison of heatmap visualization results generated by the attention module CBAM (the top row)

and the HA module (the following row).

from the observations. First, HGNN enables the model to perceive the approximate distribution of
crowds in the counting scene. Second, compared to HGNN, our proposed HA module significantly
improves the model’s ability to understand the scene, leading to better counting performance.

The effect of the HA module is strikingly similar to the way humans perceive an image. When
we observe an image for crowd counting, our attention is primarily drawn to the part of the crowd
in the image, enabling us to see more clearly.
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Table 7. Comparison of HA Module and Attention Mechanisms on the

Shanghai Tech A/B (SHTA and SHTB) Datasets

Module
Label SHTA SHTB

Location Number MAE RMSE MAE RMSE
Base ✗ � 62.8 98.8 8.2 13.5

Base+SE ✗ � 63.6 99.5 9.2 14.0
Base+GAM ✗ � 62.2 96.8 8.1 12.5

Base+CBAM ✗ � 61.7 97.1 7.8 12.0
Base+HA ✗ � 58.3 84.6 7.5 11.8

Base refers to the combination of the backbone network and MDP module.

5.2 Compared with the Attention Mechanism

Given that the effect of the HA module is similar to the attention mechanism, we compared these
two modules. Attention mechanisms have achieved significant success in various vision tasks,
such as object detection [11], semantic segmentation [16], and 3D vision [49]. However, for the
weakly supervised crowd counting task, where the supervision information is only a number, can
the attention mechanism effectively perceive the crowded areas in the counting scene?

To answer this question, we replaced the HA module with three popular attention mechanisms,
namely SE [24], CBAM [73], and GAM [46]. The SE module adaptively recalibrates channel feature
responses by explicitly modeling interdependencies among channels. CBAM uses channel atten-
tion and spatial attention in turn, and the obtained weights are multiplied with the input feature
maps for adaptive feature refinement. GAM is further designed on the basis of CBAM, dedicated to
improving deep neural network performance by reducing information dispersion and amplifying
global interactive representations. We kept other parameters unchanged, recorded the model’s per-
formance, and visualized the attention heatmap. The results are presented in Table 7 and Figure 8,
respectively.

Our experiments show that compared with the three attention modules mentioned previously,
our HA module achieves better performance on the crowded Shanghai Tech A/B datasets. Further,
the attention heatmaps in Figure 8 demonstrate that the attention module does not effectively
perceive the distribution information of the crowd in the counting scene. However, the HA module
can effectively model the crowd distribution and achieve scene understanding.

6 CONCLUSION AND OUTLOOK

This article presented the HACC model, which is based on the HGNN and is designed for the
weakly supervised crowd counting task. The model incorporates a Swin transformer based back-
bone network to capture both global contextual and local fine-grained information. To enhance
the multi-scale representation of the scene, we introduced a new MDP module. Additionally,
we proposed a HA module to leverage the higher-order associations among features and realize
scene understanding. Our experimental results showed that the proposed HA module is able to
effectively extract the distribution of crowd density using count-level supervision information
alone. This highlights the potential of hypergraph-based approaches as a new direction for
addressing the uneven distribution of crowd density.

The article also proposed the HA module, demonstrating its enormous potential in weakly su-
pervised counting tasks. However, the current HA module still faces some difficulty in modeling
complex crowd distributions, and the HACC model we introduced in this article is relatively cum-
bersome. In the future, we will strive to propose more lightweight and efficient methods to enable
more widespread application in practical scenarios. Additionally, based on the characteristic of
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node aggregation in the hypergraph module, we expect it to perform well in point-supervised
tasks, such as crowd localization, which will also be a focus of our future work.
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