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A B S T R A C T

Cell localization in medical image analysis aims for precise identification of cell positions. Existing methods
involve predicting density maps from images, followed by post-processing to extract cell location and number
details. The quality of generated density maps significantly impacts the model’s localization and counting
performance. However, density maps produced with Gaussian kernels exhibit stacking in dense regions,
resulting in inaccurate cell location information and suboptimal localization performance. In this study, we
propose an exponential distance transform map that ensures accurate location information and provides
well-defined gradient details for effective model learning, setting a new benchmark for high performance.
Additionally, to address the challenge of substantial variations in cell color within images, we introduce
a multi-scale gradient aggregation module that enhances the model’s color recognition robustness through
gradient information utilization. Experimental results across diverse datasets showcase notable improvements,
establishing a novel benchmark for cell localization.
1. Introduction

The cell localization task is dedicated to accurately predicting the
specific location and interpretable number of cells in an image, offering
valuable insights for physicians in their diagnostic process. This task in
the medical field encompasses a diverse range of applications, broadly
classified into two types. The first involves directly deriving results
from localization and counting information, as seen in calculating the
Ki-67 index. This index plays a critical role in elucidating the molec-
ular staging of breast cancer, assessing the administration of cytotoxic
therapy, and predicting prognosis. The second type utilizes acquired
information as a foundation to offer references for subsequent tasks.
For instance, in clinical settings, this task provides cell information
with robust interpretability for different departments, establishing a
scientifically credible theoretical basis for the individualized treatment
of tumor patients.

In recent years, the remarkable advancements in deep learning have
facilitated the utilization of Convolutional Neural Networks (CNN) by
numerous researchers for predicting cell location and number. For in-
stance, some studies have employed a detection or segmentation based
paradigm to localize individual cells (Shakarami et al., 2021; Alam and
Islam, 2019; Kutlu et al., 2020; Stringer et al., 2021; Pachitariu and
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Stringer, 2022; Zhu et al., 2021b). However, the annotation of bound-
ing boxes and precise edge information in this paradigm is both costly
and labor-intensive, and many medical scenarios necessitate solely the
cell’s location information, without the need for size details. As a result,
existing datasets in the field of cell localization typically offer only
point-level annotations (Sirinukunwattana et al., 2016; Tofighi et al.,
2019; Huang et al., 2020). To take advantage of point-level supervision,
many researchers have adopted a location map-based cell localization
paradigm (Huang et al., 2020; Lempitsky and Zisserman, 2010; Guo
et al., 2021; Morelli et al., 2021a; Raza et al., 2019; Xie et al., 2018),
which has emerged as a prevalent approach in this field.

1.1. Existing works for cell localization

The current cell localization paradigm is primarily based on density
maps, as shown in Fig. 1(a). Initially, the cell images are inputted into
a CNN model based on vanilla convolution to predict the correspond-
ing density maps. Subsequently, a post-processing strategy is applied
to obtain the location and count information. The existing density
maps primarily capture the density information of cells within the im-
age (Huang et al., 2020; Sirinukunwattana et al., 2016). The generation
process can be roughly summarized as follows: Firstly, an activation
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Fig. 1. Comparison of localization paradigms: (a) The existing paradigm, which relies on density maps, involves feeding the image into a Vanilla Convolution (VC)-based CNN
model to generate a density map. Subsequently, a Local Maximum Search Strategy (LMSS) is employed to extract location and number information. However, this paradigm is
plagued by several problems. Firstly, the VC-based model struggles to effectively handle images with substantial variations in cell color. Second, the density map does not provide
accurate cell location information and ideal gradient details. Lastly, the LMSS encounters difficulties in handling location map noise. (b) In contrast, our proposed paradigm, based
on EDT maps, operates by feeding the image into a Difference Convolution (DC)-based CNN model to obtain an EDT map. This EDT map is then utilized in conjunction with
the Cell Center Localization Strategy (CCLS) to derive location and number information. Our paradigm addresses these challenges and offers notable improvements. Firstly, the
DC-based model effectively mitigates the issues posed by large variations in cell color, thereby enhancing the model’s color robustness. Secondly, the EDT map accurately provides
crucial cell location information and ideal gradient details. Finally, the CCLS significantly enhances localization performance by effectively reducing background noise.
function 𝛿(𝑥 − 𝑥𝑖) is placed in the center of each cell. Assuming that
there are 𝑁 cells in an image, which can be represented as

𝐻(𝑥) =
𝑁
∑

𝑖=1
𝛿(𝑥 − 𝑥𝑖). (1)

To obtain a continuous density map, researchers (Huang et al., 2020;
Zhang et al., 2019) commonly convolve the entire image using a Gaus-
sian kernel 𝐺𝜎 (𝑥), where the size of the Gaussian kernel is determined
either by the local density or by a fixed size, denoted as

𝐹 (𝑥) = 𝐻(𝑥) ∗ 𝐺𝜎 (𝑥). (2)

To finally obtain cell location and number information based on the
density map, Huang et al. (2020) employ separate predictions for
negative and positive cells and subsequently process the output density
maps with Local Maximum Search Strategy (LMSS). Specifically, the
LMSS is employed to identify local maximum points within the density
map, which are considered as candidate points. These candidate points
are subsequently filtered to yield the final output.

1.2. Challenges

However, the existing localization paradigm described above still
has several unresolved issues, which can be categorized into three
points.

1.2.1. Density maps
The density map generated by Eqs. (1), (2) exhibits three notable

drawbacks. Firstly, when the Gaussian kernel is small, the density map
centers around a single pixel. As a result, there is too little supervisory
information in the model and it is difficult to learn effective infor-
mation. Secondly, if the Gaussian kernel is large, distinguishing dense
cell regions on the density map becomes difficult, and the gradient
information becomes less prominent. This hinders the model from
effectively learning location information, as depicted in Fig. 2. Lastly,
the gradient of the cell center, obtained from the Gaussian kernel,
decreases at a slow rate, making accurate center localization difficult.
These challenges persist to varying degrees, regardless of the Gaussian
kernel value (Liang et al., 2022).
2

Fig. 2. Comparison of the responses between density map (Huang et al., 2020) and
our EDT map. In areas of high cell density, the density map is difficult to discriminate
and the location information of the cells is lost.

1.2.2. Post-processing strategy
Current post-processing strategies suffer from susceptibility to back-

ground noise points as they directly employ a LMSS on the output
density map. Moreover, the presence of negative and positive cells leads
to interference between them. For instance, when predicting lighter-
colored negative cells, the threshold is vulnerable to darker-colored
positive cells, which subsequently leads to the neglect of negative cells.

1.2.3. Large variations in cell color
Cell staining results exhibit significant variation between different

laboratories due to subjective factors such as the staining technique,
scoring method, and choice of scoring area. Even with fully automated
staining procedures, it remains challenging to completely eliminate this
discrepancy. Consequently, the presence of dramatic variations in cell
color poses a considerable difficulty in all cell-related tasks. In Fig. 3,
it is evident that cells with lighter colors are consistently disregarded
in the EDT maps generated using conventional vanilla convolution. No-
tably, Huang et al. (2020) cleverly address this challenge by separately
predicting positive (dark-colored) and negative (light-colored) cells.
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Fig. 3. The comparison of responses from various convolutions in the EDT map for cells
exhibiting significant color variations reveals that difference convolution can effectively
enhance the model’s robustness against such variations in cell color.

However, this approach increases the complexity of dataset labeling
and limits the model’s applicability in realistic scenarios. Vanilla convo-
lution, on the other hand, tends to ignore lighter-colored cells, resulting
in an unreasonable EDT map and a significant decline in localization
and counting performance.

1.3. Our method

To address the aforementioned challenges, we present a comprehen-
sive overhaul of the cell localization paradigm. The revised paradigm,
depicted in Fig. 1(b), incorporates three key components: a novel Ex-
ponential Distance Transform (EDT) map, an enhanced post-processing
strategy for accurate cell location retrieval, and a CNN model based on
difference convolution. Firstly, the EDT map offers precise location in-
formation and superior gradient details for each cell by leveraging point
supervision. Subsequently, we introduce a Cell Center Localization
Strategy (CCLS) that facilitates the simultaneous prediction of negative
and positive cells, effectively mitigating background noise interference.
Furthermore, to mitigate the challenges posed by dramatic variations
in cell color, we propose a multi-scale gradient aggregation module
based on difference convolution. This module generates a more rational
EDT map. Our extensive experimental evaluation demonstrates that
our approach yields substantial improvements in both cell localization
performance, thereby establishing a new performance baseline for cell
localization tasks.

In summary, the contributions of this paper are summarized as
follows:

∙ We introduce a comprehensive update to the cell localization
paradigm, encompassing a novel exponential distance transform map
that enables precise cell localization, as well as a post-processing strat-
egy called cell center localization strategy for accurate retrieval of cell
location information.

∙ An innovative multi-scale gradient aggregation module based on
difference convolution is proposed, which offers a novel solution to
address the challenges posed by dramatic variations in cell color.

∙ Extensive experiments demonstrate that our method enables multi-
ple models to achieve highly competitive cell localization performance,
providing the new benchmark for future research.

The remaining sections of this paper are organized as follows: Re-
lated works of cell localization and counting and difference convolution
are reviewed in Section 2. The proposed method including EDT map,
CCLS and MGA module are detailed in Section 3. Extensive experiments
and analysis are provided in Section 4, and Section 5 is the conclusion.
3

2. Related works

In this section, we briefly describe the current state of research in
the field of CNN-based cell localization, mainly including detection-
based and map-based approaches. In addition, related works on differ-
ence convolution are reviewed.

2.1. Detection-based methods

Detection-based methods for cell localization and counting aim to
predict the location and number of cells in an image by detecting
individual cell instances (Shakarami et al., 2021; Alam and Islam,
2019; Kutlu et al., 2020). To achieve rapid and efficient detection of
blood cells in microscopic images, Shakarami et al. (2021) propose
a detector based on YOLOV3 (Redmon and Farhadi, 2018). They en-
hance the receptive field by utilizing dilated convolutions and reduce
model complexity through the use of depthwise separable convolutions,
resulting in remarkable detection performance on the BCCD dataset.
Similarly, Alam and Islam (2019) devise a cell detector based on YOLO
for automatic identification and counting of red blood cells, blood cells,
and platelets. To enhance detection accuracy, they employ a K-Nearest
Neighbors and Intersection over Union based method to handle cases
of multiple counts for the same cell. Furthermore, Kutlu et al. (2020)
propose a deep learning and migration learning-based approach for
automatic leukocyte detection in smear images.

The detection-based approach demonstrates outstanding detection
performance in scenarios where cells are sparsely distributed. How-
ever, its effectiveness diminishes significantly as cell density increases.
Furthermore, the process of annotating cell datasets with bounding
boxes is intricate and costly, imposing limitations on its broader appli-
cability. As a result, researchers employ point-based annotation meth-
ods (Tofighi et al., 2019; Sirinukunwattana et al., 2016; Huang et al.,
2020) as a more common alternative.

2.2. Map-based methods

In order to leverage the available point-based supervision effec-
tively, researchers have introduced probability maps (Sirinukunwat-
tana et al., 2016) and density maps (Tofighi et al., 2019; Huang
et al., 2020; Zhang et al., 2022; Liu et al., 2022). These maps provide
insight into cell density variations across different regions of an image,
collectively referred to as density maps. Most existing studies on cell
localization utilize density maps as a fundamental component.

Typically, Xue et al. (2016) approach the cell counting task as
a regression density map problem, training a residual convolutional
neural network for this purpose. To alleviate the scarcity of datasets
in the field of cell counting, Sirinukunwattana et al. (2016) propose
a spatially constrained convolutional neural network and introduce a
dataset named UW. Subsequently, Tofighi et al. (2019) propose a shape
priors convolutional neural network and create the PSU dataset. Their
approach involves predicting the probability of patches becoming the
center of cells and aggregating these results to generate a probability
map. In light of the relatively small size of these datasets, Huang et al.
(2020) release the largest dataset named BCData in cell localization and
counting. They design the U-CSRNet based on CSRNet (Li et al., 2018)
to regress density maps for localization and counting. Recognizing the
laborious nature of dataset-related efforts, Zhu et al. (2021a) propose
a semi-supervised density map-based cell counting framework that can
be trained using unlabeled images. In addition, some researchers are
committed to applying cell localization and counting techniques to
practical medical scenarios (Falk et al., 2019; Morelli et al., 2021b;
Mandracchia et al., 2017; Hosseini et al., 2020; Zhang et al., 2023;
Kleinovink et al., 2019; Huang et al., 2017). For example, to enable
non-specialists to analyze their data remotely, Falk et al. (2019) offer
an ImageJ plug-in specifically for U-Net-based cell localization counting
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and detection. Furthermore, some researchers (Guo et al., 2021, 2019;
Li et al., 2022) focus on cell localization and counting in 2D and 3D
scenarios. Recently, Chen et al. (2021a) train a CNN model to predict
a two-dimensional direction field map, which is subsequently utilized
for individual cell localization and counting. However, the reliance on
the direction field map introduces challenges such as mutual overlap
between cells, leading to a decrease in localization performance.

The aforementioned studies have made significant contributions to
the advancement and implementation of cell localization and counting.
Nevertheless, the current density map encounters challenges when
differentiating densely populated cell areas, thereby impeding precise
cell localization and counting. Additionally, the gradient information
provided by the density map generated through Gaussian algorithms
lacks clarity, posing difficulties in obtaining accurate cell location
information.

2.3. Works on difference convolution

To make full use of the local texture information of the image, Ojala
et al. (2002) adopt the local relationships between adjacent features
as effective discriminative features to improve the recognition per-
formance. Inspired by this idea, Yu et al. (2020) propose the central
difference convolution, which aggregates intensity and gradient infor-
mation to capture local gradient details, thereby enhancing the model’s
resilience to environmental variations. Subsequently, Yu et al. (2021b)
argue that the central difference convolution involves redundant differ-
ence operations on all neighborhood features, leading to computational
inefficiencies. Therefore, they propose cross-centered difference convo-
lution, which decouples into two symmetrically crossed suboperators
horizontally vertically, and diagonally to reduce the computational
cost. Later, Su et al. (2021) introduce difference convolution to the
edge detection, using the difference information to enhance the model’s
ability to characterize the abrupt and detailed features of the edge back-
ground. Recently, Wang et al. (2023a) propose an adaptive multiscale
differential graph convolutional network based on differential convo-
lution for capturing implicit associations between joints and handling
actions across different time intervals. In addition, to reduce feature
redundancy while obtaining distinctive features, Zhou et al. (2021)
and Bi et al. (2022) design a multi-grain perception module based
on differential dilated convolutions. This module captures gradient
features within different ranges to achieve a discriminative multigrain
representation.

The utilization of difference convolution has significantly improved
the characterization of image texture information by leveraging the
local gradient relationships among adjacent features. In this paper, we
pioneer the application of difference convolution in the domain of cell
localization and counting, aiming to address the challenge posed by the
considerable variations in cell color. By enhancing the gradient infor-
mation within the images, our approach offers a promising solution to
this challenge.

3. Method

The methodology’s overview is illustrated in Fig. 1b. During the
training phase, a CNN model establishes the mapping relationship
between a cell image and a corresponding location map. Subsequently,
the test phase processes the location map to obtain the exact location
and number of cells. The performance of the cell localization and
counting is mainly determined by three main components: the CNN-
based model, the quality of the location map, and the post-processing
strategy. Given that the CNN model’s evaluation hinges on the location
map, we sequentially introduce the Exponential Distance Transform
(EDT) map proposed in this study, followed by the Cell Center Localiza-
tion Strategy (CCLS) applied in the post-processing step, and conclude
with the CNN model grounded in the Multi-scale Gradient Aggregation
(MGA) module.
4

Fig. 4. The visualization comparison includes the IDT map, FIDT map, and EDT
map. The IDT map (a) exhibits faster gradient decay in the foreground region, while
decaying slower in the background, leading to a sustained high response. The FIDT
map (b) demonstrates slower gradient decay in the background while maintaining a
high response. In contrast, the EDT map (c) exhibits slower gradient decay in the
foreground region and faster decay to 0 in the background region. Comparing the
distance distributions of the IDT map, FIDT map, and EDT map (d), it is evident that
the EDT map closely approximates the ideal distribution.

3.1. Exponential distance transform map

Building on prior works in crowd localization tasks (Olmschenk
et al., 2019; Liang et al., 2022), we present the Exponential Distance
Transform (EDT) map as a fresh approach that encompasses two pivotal
stages: the Inverse Distance Transform (IDT) map and an adaptable
scaling exponential optimization strategy.

To address the challenge of distinguishing dense regions in the
density map, Olmschenk et al. (2019) propose the IDT map (Fig. 4(a)),
which ensures independence among the targets in each region through
distance inversion. However, IDT maps suffer from rapid decay of
pixel values in target foreground features and slow decay in back-
ground areas. In response, Liang et al. (2022) introduce the FIDT map
(Fig. 4(b)) that employs a primary term as an exponent of the distance
function, enabling slower decay in the foreground and rapid decay
in the background. Nonetheless, the linear relationship between the
principal term and distance leads to slow decay in the background and
non-zero response (Fig. 4(d)). To overcome this limitation, we propose
an EDT map based on an adaptive scaling exponential optimization
strategy (Fig. 4(c)). Compared to IDT and FIDT map, our EDT map
demonstrates a more reasonable pixel distribution, with slower decay in
the target foreground region and rapid decay to zero in the background
region (Fig. 4(d)).

Initially, an array of identical dimensions to the original image is
generated. The cells in the image are mapped to zero-valued pixel
points in the array, while the remaining points are assigned a pixel
value of 255. The nearest distance between the zero-valued pixel points
in the array and each pixel point is then determined, denoted as

𝐷𝑇 (𝑥, 𝑦) = min
√

(𝑥 − 𝑥 )2 + (𝑦 − 𝑦 )2, where 𝑖 ∈ 𝐼, (3)
𝑖 𝑖
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Fig. 5. The visualization of EDT maps at different cell densities is presented for
comparison. Figure (a) illustrates a rapid decay to zero in a dense cell scenario, while
Figure (b) shows a slower decay to zero in a sparse cell scenario. The decay of pixel
values in the EDT maps for these two scenarios is further compared in Figure (c).

where 𝐼 denotes all zero-valued points in the image, i.e., the cell
centroids. The Inverse Distance Transform (IDT) map is generated as

𝐼𝐷𝑇 = 1
𝐷𝑇 (𝑥, 𝑦) + 𝐶

, (4)

where 𝐶 is a constant introduced to prevent division by zero. The
IDT map is constructed following the 1KNN method (Olmschenk et al.,
2019) (Fig. 4(d)). The IDT map exhibits a steep gradient in the fore-
ground region, enabling more precise localization. However, a draw-
back of the IDT maps is the rapid decay of gradients in the fore-
ground area, while the gradients in the background region decay
slowly, leading to a sustained high response.

To address this issue, Liang et al. (2022) proposed the FIDT map for
optimization using the equation

𝐹𝐼𝐷𝑇 = 1
𝐷𝑇 (𝑥, 𝑦)𝛼⋅𝐷𝑇 (𝑥,𝑦)+𝛽 + 𝐶

, (5)

where the primary term is exponentiated by the distance function in
the IDT. This formulation ensures a slow decay of the target in the
foreground region and rapid decay in the background region. However,
the growth rate of the principal term 𝛼 ⋅ 𝐷𝑇 (𝑥, 𝑦) + 𝛽 tends to be
linear with respect to the distance function 𝐷𝑇 (𝑥, 𝑦). Consequently, the
FIDT map still exhibits slow decay in the background region, and the
response is not reduced to zero.

Ideally, the location map exhibits a slow gradient decay in the fore-
ground region and a fast decay to zero in the background region. To this
end, we propose an adaptive scaling exponential optimization strategy
to make the location map decay to zero rapidly in the background
5

region, and propose different decay rates for different location maps,
as shown in Eq. (6).

𝐸𝐷𝑇 = 1

𝐷𝑇 (𝑥, 𝑦)
𝐶1 ⋅𝐷𝑇 (𝑥,𝑦)

𝑀𝑎𝑥(𝐷𝑇 (𝑥,𝑦))+𝐶2 + 𝐶3

, (6)

where 𝐶1, 𝐶2, and 𝐶3 are hyperparameters that control the gradient
of the distance map. 𝑀𝑎𝑥(𝐷𝑇 (𝑥, 𝑦)) represents the maximum distance
to the nearest zero-valued pixel for each pixel in the map. As the
distance between the background and foreground points (cell centroids)
approaches its maximum value, the pixel value in the background
region rapidly decays to zero. Moreover, considering the diverse cell
density distribution in different pathology images, the EDT map ex-
hibits distinct decay rates for various densities, as depicted in Fig. 5.
In comparison to the IDT and FIDT maps, our EDT map demonstrates
a more reasonable distribution of pixel values: the foreground region
associated with the target cells decays slowly, while the background
region decays rapidly to zero (Fig. 4(d)). Subsequent ablation experi-
ments involve further analysis and comparison of the EDT maps with
the IDT and FIDT maps.

3.2. Cell center localization strategy

In the preceding subsection, we performed the transformation of
the original cell image into an EDT map. The subsequent step involves
a post-processing procedure to acquire the final cell locations and
counts. Motivated by the Local Maxima Detection Strategy (LMDS Liang
et al., 2022), we have devised a Cell Center Localization Strategy
(CCLS) outlined in Algorithm 1. Our CCLS is specifically tailored for
the task of cell localization, considering our optimized downsampling
approach and adjusted filtering thresholds, distinguishing it from the
LMDS method.

Algorithm 1 Cell center localization strategy

Input: The predicted EDT map.
Function: Get the coordinates and the total number of cell centers
according to the EDT map.
1: EDT = max_pool2d(EDT, size=(11,11))
2: Cand_Spots = max_pool2d(EDT, size=(11,11))
3: Loc_map = Cand_Spots × EDT
4: if max(Loc_map) ≤ 0.01 then
5: Coordinates = None
6: number = 0
7: else
8: Loc_map[Loc_map ≤ threshold] = 0
9: Loc_map[Loc_map ≥ 0] = 1
10: Number = sum(Loc_map)
11: Locations = nonzeros(Loc_map)
Output: The corresponding locations and number of cells.

Given an EDT map, we initially apply the maximum pooling tech-
nique to identify local maxima, followed by employing a threshold to
eliminate background noise. In the context of pathological sections,
where the thickness is typically between 3–5 μm and image acquisition
is performed with the microscope’s camera focused on the tissue area
through the objective lens, extreme situations involving objects that are
extremely small or excessively large, often encountered in photography,
are absent. Nonetheless, the presence of tumor cell heterogeneity leads
to variations in size among the targets. Therefore, to capture multiple
candidate cell centers, we utilize a large pooling layer of 11 × 11
and perform two pooling operations. These resulting local maxima
serve as potential cell center points. Furthermore, as illustrated in
Fig. 2, given the comparatively weaker response of light-colored cells
in the predicted EDT maps, we employ a lower threshold to ensure the
inclusion of these light-colored cells.
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Table 1
Comparison of existing publicly available datasets in the field of cell localization and counting.
Dataset Venue Images Annotated objects Resolution

UW (Sirinukunwattana et al., 2016) TMI 16 100 29,756 500 × 500
PSU (Tofighi et al., 2019) TMI 19 120 25,462 612 × 452
BCData (Huang et al., 2020) MICCAI 20 1338 181,074 640 × 640
ccRCC Grading (Gao et al., 2021) MICCAI 21 1000 70,945 512 × 512
CoNIC (Graham et al., 2021b,a) ICCV 21 4981 495,179 256 × 256
Fig. 6. Multi-scale gradient aggregation module. Capture multi-scale gradient in-
formation using branches with different dilated rates, and output after continuous
superposition.

3.3. Multi-scale gradient aggregation module

In the previous subsection, the candidate points showed minimal
distinction between the background noise and light-colored cells on the
EDT map. To address this issue and mitigate the impact of significant
color variations in cell localization and counting tasks, we present a
novel Multi-scale Gradient Aggregation (MGA) module based on differ-
ence convolution. The MGA module aims to enhance the response of
light-colored cells on EDT maps. To provide context, we first introduce
the principle of difference convolution and subsequently present our
MGA module.

The conventional vanilla convolution can be mathematically ex-
pressed as follows:

𝑦(𝑝0) =
∑

𝑝𝑛∈𝑅
𝑤(𝑝𝑛) ⋅ 𝑥(𝑝0 + 𝑝𝑛), (7)

where 𝑝0 denotes the central position of the local receptive field 𝑅,
𝑝𝑛 denotes the relative position of each value in the 𝑅 to 𝑝0, and
𝑤(𝑝𝑛) is the learnable parameter. On the other hand, the difference
convolution (Yu et al., 2020) can be expressed as

𝑦(𝑝0) =
∑

𝑝𝑛∈𝑅
𝑤(𝑝𝑛) ⋅ (𝑥(𝑝0 + 𝑝𝑛) − 𝑥(𝑝0)). (8)

That is, each value 𝑥(𝑝0 + 𝑝𝑛) in the local receptive field 𝑅 is sub-
tracted from its centroid 𝑥(𝑝0) to form the local gradient information.
Additionally, to incorporate the stronger semantic information offered
by the conventional vanilla convolution, the final form of difference
convolution is given by:

𝑦(𝑝0) =
∑

𝑝𝑛∈𝑅
𝑤(𝑝𝑛) ⋅ 𝑥(𝑝0 + 𝑝𝑛) + 𝜃(−𝑥(𝑝0) ⋅

∑

𝑝𝑛∈𝑅
𝑤(𝑝𝑛)), (9)

where 𝜃 is a hyperparameter with a default value of 0.7, which we will
discuss further in the ablation experiment.
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We propose the novel MGA module based on difference convolution,
with the aim of improving the robustness of the model to cell color
variations. The MGA module uses difference convolution with different
dilated rates to extend the receptive field of gradients, enabling the
model to obtain rich gradient information. Specifically, as shown in
Fig. 6, the input feature map is first convolved by 1 × 1 convolution
to adjust the channel dimension, and then fed into the difference
convolution branches with different dilated rates, respectively. There
are 4 branches with corresponding field sizes of 3 × 3, 5 × 5, 7 × 7,
and 9 × 9 respectively. Each branch is designed based on a 3 × 3
convolutional kernel with corresponding dilated rates of 1, 2, 3, and
4, respectively. For example, 5 × 5 DC indicates that this branch has a
receptive field size of 5 × 5, that is, a convolution kernel size of 3 × 3
and a dilated rate of 2. Finally, the optimized feature map is obtained
by stitching the outputs of different branches.

4. Experiments and analysis

4.1. Datasets and experimental details

In the field of cell localization and counting, widely used publicly
available datasets include BCData (Huang et al., 2020), ccRCC Grad-
ing (Gao et al., 2021), CoNIC (Graham et al., 2021b,a), PSU (Tofighi
et al., 2019), and UW (Sirinukunwattana et al., 2016), as summarized
in Table 1. We provide a brief description of each dataset along with
the experimental details.

The BCData (Huang et al., 2020) dataset is currently the largest
dataset for cell localization and counting in the field. It comprises
1338 images of breast tumor cells, all with a uniform resolution of
640 × 640. The dataset includes a total of 181,074 annotated cells
and is specifically designed for Ki-67 index assessment tasks. Notably,
the BCData dataset exhibits three key characteristics: (1) uneven dis-
tribution of tumor cell density, (2) varying positive rates of cells, and
(3) diverse cell traits. The dataset is divided into a training set (803
images), validation set (133 images), and test set (402 images). We
would like to highlight that our experiments were conducted based
on the U-CSRNet∝ implementation available at https://openi.pcl.ac.cn/
xuf01/ki67, as indicated in Table 2.

The ccRCC Grading (Gao et al., 2021) dataset consists of 1000 H&E
stained images that contain a total of 70,945 labeled cell nuclei. Each
image has a resolution of 512 × 512, and each cell nucleus has an
instance segmentation mask and a classification mask. In order to use
this dataset for cell localization, we derived the centroids of the cells by
a connected domain algorithm and used them for cell localization tasks.

The CoNIC (Graham et al., 2021b,a) dataset includes histology im-
ages stained with Haematoxylin and Eosin, captured at a 20x objective
magnification, sourced from six distinct data repositories. It consists
of 4981 images, each with a resolution of 256 × 256 pixels, and
provides annotations for 495,179 labeled cell nuclei. Each image is
accompanied by both instance segmentation and classification masks,
offering detailed insights into the spatial distribution of cell nuclei
and their corresponding classifications. This comprehensive dataset
is tailored to support extensive research and analysis in the field of
cell image recognition. Adopting the same processing approach as the
ccRCC Grading dataset, the processed dataset can be accessed here.

The PSU (Tofighi et al., 2019) dataset consists of 120 images of
porcine colon tissue, each with a resolution of 612 × 452. It encom-
passes 25,462 annotated cells and represents cross-sections of colonic

https://openi.pcl.ac.cn/xuf01/ki67
https://openi.pcl.ac.cn/xuf01/ki67
https://openi.pcl.ac.cn/xuf01/ki67
https://drive.google.com/drive/folders/1sQPfeg0sxFihFalPzBzn2HojRIbWi0ck?usp=drive_link


Engineering Applications of Artificial Intelligence 132 (2024) 107948B. Li et al.
Table 2
Comparison of localization performance with different location maps and post-processing strategies on the BCData validation dataset. Models
default to a categorical prediction method that distinguishes between negative and positive cells, while models marked with an asterisk ∗

represent uniform predictions. We have indicated the best-performing records in each group with bold font, as done for all the subsequent
tables.
Methods Map Post-process Positive Negative Average

F1/Pre/Rec F1/Pre/Rec F1/Pre/Rec(%) ↑

SC-CNN (Sirinukunwattana et al., 2016) Density LMSS 79.8/77.0/82.8 77.8/73.4/82.9 75.2/82.9/78.8
CSRNet (Li et al., 2018) Density LMSS 82.9/82.4/83.4 81.4/80.9/81.9 81.7/82.6/82.2
U-CSRNet (Huang et al., 2020) Density LMSS 86.3/86.9/85.7 85.2/84.4/86.0 85.7/85.6/85.9
U-CSRNet∝ Density LMSS 84.7/84.4/85.0 84.6/84.7/84.5 84.7/84.5/84.8
U-CSRNet Density CCLS 86.1/87.2/85.0 83.9/83.6/84.3 85.0/85.4/84.7
U-CSRNet EDT LMSS 85.8/88.3/83.4 83.9/84.8/83.0 84.8/86.5/83.2
U-CSRNet EDT CCLS 86.5/89.5/83.8 84.8/85.2/84.5 85.7/87.4/84.1

U-CSRNet∗ Density LMSS – – 85.2/85.4/84.9
U-CSRNet∗ Density CCLS – – 85.5/86.7/84.3
U-CSRNet∗ EDT LMSS – – 85.9/85.4/86.5
U-CSRNet∗ EDT CCLS – – 86.9/86.6/87.2
𝑅
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epithelial cells. The dataset deliberately includes areas with artifacts,
over-coloring, and autofocus failures to capture real-scene outliers. We
employed the first 90 images as the training set and the remaining 30
images as the validation set.

The UW (Sirinukunwattana et al., 2016) dataset encompasses 100
H&E-stained histological images of colorectal adenocarcinoma, each
with a resolution of 500 × 500. This dataset comprises non-overlapping
regions extracted from 10 full cross-section images of 9 patients, result-
ing in a total of 29,756 annotated cells. To construct the dataset, we
randomly crop non-overlapping regions from the 10 whole images. We
allocate 70 images to the training set and 30 images to the validation
set, maintaining a training set to validation set ratio of 7:3.

Considering the similar scale of the aforementioned datasets, we
opt to uniformly resize them to 512 × 512 before generating the
corresponding EDT maps. Our experimental setup is as follows: we
utilize the MSE loss function for optimization, set the learning rate to
1e–4, apply a decay rate of 1e–5 after 200 epochs, employ the Adam
optimizer, and select a minimum batch size of 4. The experiments are
conducted on a NVIDIA GeForce RTX 3090 GPU with approximately
24 GB of memory, and the project code will be publicly available at
https://github.com/Boli-trainee/MHFAN

4.2. Evaluation criteria

This paper focuses on the task of cell localization and counting, with
evaluation criteria primarily focused on the performance of localization
and counting.

Localization criteria: In order to assess the accuracy of the model’s
localization, we employ F1 score, precision, and recall as evaluation
metrics.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(10)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(11)

𝐹1 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

, (12)

where 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 indicates a successful match when the distance
between a given predicted point and the true value point is less
than a threshold 𝜎. The selection of thresholds is closely tied to the
characteristics of real cell images. For this study, we choose two fixed
threshold levels (𝜎 = 5, 10) to evaluate the model’s performance. A
smaller threshold value corresponds to a higher level of precision in
positioning accuracy.

Counting criteria: Instead of directly regressing the number of
cells, this paper relies on the results obtained from cell localization.
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Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) m
are utilized to evaluate the counting performance of the model. The
equations for MAE and RMSE are given as follows:

𝑀𝐴𝐸 = 1
𝑚

𝑚
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖|, (13)

𝑀𝑆𝐸 =

√

√

√

√

1
𝑚

𝑚
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2, (14)

here 𝑚 is the number of cells, 𝑦𝑖 is the number of ground truth, and
𝑦𝑖 is the predicted number for 𝑖th cell.

.3. Experiments and analysis

In this section, we commence by first validating the effectiveness
f the EDT map and the CCLS strategy. To align with the ultimate
linical objectives of cell localization tasks, this paper employs two
pproaches to validate the effectiveness of the proposed algorithm. One
nvolves separate predictions of positive and negative cells, specifically
esigned for calculating the Ki67 index. The other approach is the more
idely applicable unified prediction for all cells. Therefore, we initially

mplemented separate predictions using BCData, which provides infor-
ation about cell positivity and negativity. Subsequently, we confirmed
nified predictions on all datasets, as shown in Tables 2 and 3. Building
n this foundation, we proceed to confirm the efficacy of the MGA
odule through module replacements. As demonstrated in Tables 4–
, replacing several existing popular models with the MGA module
esulted in performance improvements, signifying the effectiveness of
he MGA module.

.3.1. EDT map and CCLS
To calculate the Ki67 index directly, BCData (Huang et al., 2020)

pted for the direct prediction of two density maps corresponding
o negative and positive cells. To ensure a fair comparison, we also
mployed a method that separately predicts negative and positive cells
o validate the Ki67 predictive performance based on EDT maps and
CLS, as outlined in the upper section of Table 2. Subsequently, in order
o extend the applicability of cell localization to a broader spectrum of
linical tasks, we adopted a uniform prediction approach to validate
ur method, as demonstrated in the lower section of Tables 2 and 3.

Based on the results from Tables 2 and 3, we can deduce four
onclusions. Firstly, the CCLS enhances the post-processing procedure,
eading to improved localization performance while maintaining the
ame location map. Secondly, the combination of Peak_local_max algo-
ithms and EDT maps yields subpar results. Our observation suggests
hat this outcome may be attributed to the vulnerability of light-
olored negative cells to interference from dark-colored cells, thereby
iminishing localization accuracy. This factor contributes to the ra-
ionale behind the uniform prediction approach. Thirdly, our EDT

aps demonstrate significant advantages when employed within the

https://github.com/Boli-trainee/MHFAN


Engineering Applications of Artificial Intelligence 132 (2024) 107948B. Li et al.
Table 3
Comparing the localization performance using various location maps and post-processing strategies across four datasets: CoNIC, ccRCC, PSU,
and UW dataset.
Methods Map Post-process CoNIC ccRCC PSU UW

F1/Pre/Rec F1/Pre/Rec F1/Pre/Rec F1/Pre/Rec (%) ↑

U-CSRNet Density LMSS 76.0/77.2/75.9 85.3/84.1/85.5 78.1/77.6/78.7 79.5/77.8/81.2
U-CSRNet Density CCLS 76.4/78.0/75.8 85.6/84.9/86.3 78.5/77.8/79.1 79.5/79.0/80.1
U-CSRNet EDT LMSS 77.6/77.4/77.9 86.2/85.0/87.5 79.6/78.9/80.3 80.8/80.1/81.5
U-CSRNet EDT CCLS 78.7/80.0/77.5 88.2/84.6/92.1 80.4/78.2/82.7 81.8/80.5/82.2

U-Net Density LMSS 80.6/83.4/77.8 87.5/88.0/87.1 79.6/78.9/80.3 80.2/80.0/80.3
U-Net Density CCLS 81.2/84.6/77.9 87.9/88.8/86.9 80.1/79.8/80.5 80.8/80.1/81.6
U-Net EDT LMSS 82.0/85.6/78.4 89.2/91.0/88.4 80.5/80.1/80.9 81.6/80.8/82.4
U-Net EDT CCLS 82.9/87.4/78.7 89.4/92.6/86.4 81.0/80.3/81.7 82.9/81.5/84.3
Table 4
Quantitative comparison of localization and counting performance of different models
on the BCData validation dataset.

Methods Counting Localization(5) Localization(10)
MAE/RMSE↓ F1/Pre/Rec(%) ↑ F1/Pre/Rec(%) ↑

UNext 22.8/28.8 67.5/66.4/68.5 81.9/80.6/83.2
U_CSRNet 19.8/25.3 75.7/74.3/77.0 86.9/86.6/87.2
MPViT 21.5/27.7 74.4/76.5/72.4 85.8/88.3/83.5
U-Net 22.3/28.3 75.6/73.1/78.2 86.3/83.4/89.3
Attention U-Net 23.4/28.5 75.1/71.9/78.5 86.1/82.5/90.0
TransUNet 23.6/29.6 76.2/79.1/73.5 86.3/89.6/83.2
Swin Transformer 19.9/25.8 76.1/74.7/77.5 86.8/85.2/88.3
VGG16 19.9/25.8 77.7/76.0/79.3 86.6/84.8/88.5
Hover-Net 20.9/27.2 77.6/75.6/79.7 86.7/84.4/89.0
HRNet 22.2/27.8 77.0/76.5/77.5 86.5/86.0/87.1

M_U_CSRNet 18.9/24.8 76.8/75.6/78.0 88.0/87.5/89.6
M_U-Net 20.7/25.6 77.1/76.3/78.1 87.6/85.5/89.7
M_HRNet 20.7/26.5 79.6/79.9/79.4 88.0/88.3/87.7

unified prediction paradigm (indicated by the asterisk in Table 2),
surpassing the performance of commonly used density maps. Finally,
the combination of EDT maps and CCLS, as proposed in this paper,
achieves the highest localization performance in both separate and
uniform predictions of cells.

To further validate the performance of our proposed EDT map and
CCLS across different datasets and models, we conducted experiments
on four additional datasets using a consistent prediction approach.
Specifically, we employed the U-CSRNet (Huang et al., 2020) and the
widely recognized U-Net (Ronneberger et al., 2015) in the field of
medical imaging. The performance of the models was evaluated with
a threshold value of 𝜎 = 10. As evident from Tables 2 and 3, our
introduced EDT map exhibits superior performance compared to the
existing density map, achieving the optimal localization performance
in conjunction with the CCLS.

4.3.2. MGA module
The above comparison clearly demonstrates the superior perfor-

mance of our EDT map and CCLS over existing density map and
LMSS in the task of cell localization. In the subsequent experiments,
we exclusively rely on EDT maps and CCLS for validation. Firstly,
we reevaluated the localization performance of several widely used
models across multiple datasets, including UNext (Valanarasu and
Patel, 2022), U-CSRNet (Huang et al., 2020), MPViT (Lee et al.,
2022), U-Net (Ronneberger et al., 2015), Lite-UNet (Li et al., 2024),
Attention U-Net (Oktay et al., 2018), TransUNet (Chen et al., 2021b),
Swin Transformer (Liu et al., 2021), hover (Graham et al., 2019), W-
Net (Mao et al., 2021), and HRNet (Sun et al., 2019). It is worth noting
that, in order to align the input–output structure of the aforementioned
models with the cell localization task, we employed the same strategy
as in HRNet. This involves overlaying feature maps from different levels
and performing deconvolution to obtain the final output. Secondly, we
validated the effectiveness of the proposed MGA module using several
models. Specifically, these models encompass the U-CSRNet, the widely
employed U-Net in medical image analysis, and the high-performing
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Table 5
Quantitative comparison of localization and counting performance of different models
on the BCData test dataset.

Methods Counting Localization(5) Localization(10)
MAE/RMSE↓ F1/Pre/Rec(%) ↑ F1/Pre/Rec(%) ↑

UNext 20.4/27.0 68.9/68.8/69.0 82.4/82.3/82.5
U_CSRNet 18.1/23.8 73.8/73.7/74.0 85.6/85.4/85.7
MPViT 22.3/29.2 75.3/79.3/71.6 85.5/90.1/81.4
U-Net 24.9/33.4 76.7/81.7/72.1 85.7/80.7/91.4
Lite-UNet 18.1/24.3 76.5/77.0/76.1 86.3/86.3/86.4
Attention U-Net 19.6/24.9 77.1/74.9/79.5 86.5/84.0/89.1
TransUNet 17.7/23.3 77.3/76.5/78.1 86.9/86.1/87.8
Swin Transformer 17.1/23.1 78.1/77.8/78.4 87.1/86.7/87.4
VGG16 17.7/23.2 79.2/78.6/79.8 86.9/86.3/87.5
Hover-Net 18.3/23.8 79.2/78.3/80.1 87.0/86.1/88.0
HRNet 18.5/24.7 79.2/80.1/78.3 87.3/88.4/86.3

M_U_CSRNet 17.4/22.5 74.9/74.1/75.7 87.1/87.5/86.7
M_U-Net 22.8/31.0 77.8/78.5/76.9 86.9/82.1/91.8
M_HRNet 19.9/25.6 79.3/80.2/78.3 87.2/88.3/86.2

Table 6
Quantitative comparison of localization and counting performance of different models
on the ccRCC Grading test dataset.

Methods Counting Localization(5) Localization(10)
MAE/RMSE↓ F1/Pre/Rec(%) ↑ F1/Pre/Rec(%) ↑

UNext 6.1/7.5 80.7/78.9/82.4 88.4/86.5/90.5
U_CSRNet 7.5/8.8 81.8/78.5/85.5 88.2/84.6/92.1
MPViT 6.2/7.8 82.0/82.5/81.6 88.5/88.4/88.7
U-Net 5.8/7.9 83.7/86.7/80.8 89.4/92.6/86.4
Lite-UNet 5.2/7.4 84.4/85.8/83.1 89.6/91.3/86.9
Attention U-Net 4.6/6.0 83.4/83.6/83.2 89.7/89.8/89.5
TransUNet 5.0/7.0 83.6/84.0/83.3 90.0/90.3/89.6
Swin Transformer 6.0/7.9 82.4/80.2/84.6 89.4/87.0/91.9
VGG16 5.3/6.8 83.9/82.8/84.9 89.4/87.8/90.9
W-Net –/– 85.0/83.0/88.0 –/–/–
Hover-Net 4.8/6.3 85.4/84.3/86.5 90.2/89.7/90.7
HRNet 4.9/6.9 85.6/87.3/83.9 90.4/92.3/88.7

M_U_CSRNet 7.0/8.5 82.5/81.2/83.8 89.2/86.6/91.9
M_U-Net 5.3/7.0 84.6/85.8/83.5 90.6/92.5/88.7
M_HRNet 4.7/6.2 86.2/87.3/85.0 91.3/91.8/90.7

HRNet across multiple datasets in this field. We replaced the initial set
of coding layers in these models with the MGA module to enhance the
model’s resilience to variations in cell color. For instance, in the case of
HRNet (Sun et al., 2019), we substituted the first encoder layer with the
MGA module, which is responsible for transforming the feature channel
dimension from 3 to 64.

Tables 4 and 5 present the results for counting performance and
localization performance on the BCData validation and test datasets.
Tables 6, 7, 8 and 9 illustrate the performance of the models on the
ccRCC Grading, CoNIC, PSU and UW datasets. In these tables, the
prefix ‘‘M_’’ indicates the replacement of a portion of the encoder
layer in the aforementioned model with our MGA module. From the
analysis of these tables, the following insights can be derived: (1) Most
of the classical models achieve remarkable counting and localization
performance when utilizing EDT maps; (2) The incorporation of the
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Table 7
Quantitative comparison of localization and counting performance of different models
on the CoNIC test dataset.

Methods Counting Localization(5) Localization(10)
MAE/RMSE↓ F1/Pre/Rec(%) ↑ F1/Pre/Rec(%) ↑

UNext 25.1/33.0 71.6/76.9/66.9 77.6/83.5/72.6
U_CSRNet 17.8/24.7 72.6/73.7/71.5 78.7/80.0/77.5
MPViT 19.5/25.5 74.0/74.7/73.3 79.7/80.4/78.9
U-Net 20.0/24.9 77.7/81.9/73.9 82.9/87.4/78.8
Attention U-Net 14.3/19.7 79.0/79.9/78.1 83.9/84.9/82.9
TransUNet 20.0/27.5 74.1/76.8/71.7 80.5/83.3/77.8
Swin Transformer 24.1/30.8 76.3/81.4/71.8 80.8/86.2/76.0
HRNet 18.0/28.4 77.8/76.9/78.7 82.4/81.5/83.4
Hover-Net 20.4/25.1 80.3/85.2/75.4 83.9/89.4/79.1

M_U_CSRNet 16.7/22.5 74.1/76.2/72.0 80.2/83.6/76.8
M_U-Net 18.3/23.1 78.9/82.0/75.9 83.7/85.1/82.3
M_HRNet 14.5/21.0 78.6/80.5/76.8 83.9/85.9/82.0

Table 8
Quantitative comparison of localization and counting performance of different models
on the PSU dataset.

Methods Counting Localization

MAE↓ RMSE↓ F1↑(𝜎 = 5) F1↑(𝜎 = 10)

UNext 43.2 52.1 59.2 78.1
U_CSRNet 32.1 38.2 54.5 80.4
MPViT 36.6 44.7 61.1 81.0
U-Net 32.6 38.5 61.0 81.0
Lite-UNet 33.7 38.4 60.2 79.6
Attention U-Net 31.4 36.8 63.5 82.1
TransUNet 40.1 49.4 58.9 80.1
Swin Transformer 26.6 32.1 62.2 82.1
Hover-Net 26.9 33.1 64.5 82.6
HRNet 27.6 32.4 66.1 83.5

M_U_CSRNet 29.5 36.1 56.2 81.2
M_U-Net 30.4 34.7 63.1 82.3
M_HRNet 24.8 30.3 69.6 85.3

Table 9
Quantitative comparison of localization and counting performance of different models
on the UW dataset.

Methods Counting Localization

MAE↓ RMSE↓ F1↑(𝜎 = 5) F1↑(𝜎 = 10)

UNext 24.5 32.3 68.3 79.6
U_CSRNet 21.7 29.9 69.3 81.8
VGG16 22.4 30.6 71.7 83.3
U-Net 29.5 38.4 70.5 82.9
TransUNet 24.5 32.0 71.4 83.4
Swin Transformer 22.9 33.1 72.0 83.6
Hover-Net 22.3 31.2 71.8 85.1
HRNet 26.2 36.1 71.5 84.9

M_U_CSRNet 20.1 26.5 70.5 82.5
M_U-Net 29.1 37.5 71.6 84.0
M_HRNet 23.6 28.2 72.2 85.2

MGA module significantly enhances both the counting and localization
performance of the aforementioned models; (3) Among these models,
the combination of HRNet and the MGA module yields the highest
counting and localization performance. To provide a more visual rep-
resentation of the localization performance, we display the localization
visualization results for cell images using M_HRNet model in Fig. 7.

4.4. Ablation experiments

4.4.1. EDT map
As described in the previous Section 3.1, our goal is to achieve rapid

decay of the EDT map in the center of the cell for better localization
of the center point. The decay should then be slower throughout the
foreground area and finally decay quickly in the background area,
with most images decaying to zero beyond 15 pixels. To gain a deeper
9

Fig. 7. Visualization results of model localization performance. The first column
displays the original cell image, the second column illustrates the cell location map, and
the third column presents the visualization of the localization results, where detected
cell centers are highlighted with bounding boxes.

Table 10
Ablation experiments of hyperparameters 𝐶1 and 𝐶2 in EDT maps, comparison of
counting and localization performance of models on EDT maps under different
hyperparameter combinations.

Methods 𝐶1 𝐶2 Localization Counting

Pre (%) Rec (%) F1↑ MAE↓ RMSE↓

IDT – – 84.9 83.5 84.2 21.7 27.3
FIDT – – 85.8 84.9 86.6 20.1 25.0
EDT 5 0.5 84.5 84.1 84.3 20.3 25.7
EDT 5 1 86.4 84.6 85.5 20.6 26.4
EDT 10 1 86.5 85.7 86.1 19.4 24.5
EDT(Ours) 10 0.5 86.6 87.2 86.9 18.4 23.9

understanding of the decay process of the EDT map, we conducted
ablation experiments on the hyperparameters 𝐶1 and 𝐶2 in Eq. (6). By
changing only one of the hyperparameters, we observed the distance
change of the EDT map, as shown in Fig. 8. The results indicate that the
𝐶1 parameter primarily affects the decay rate of the EDT map outside
the central region, while the 𝐶2 parameter mainly affects the decay rate
in the central region. Furthermore, we conducted ablation experiments
based on U-CSRNet using various combinations of hyperparameters, as
presented in Table 10. The table reveals two key findings: (1) Different
combinations of hyperparameters significantly impact the final localiza-
tion performance; (2) The table also includes a comparison of IDT and
FIDT maps, demonstrating that our EDT map outperforms both in terms
of localization performance. For this paper, we adopt the combination
that achieves the best localization performance, with 𝐶1 and 𝐶2 set to
10 and 0.5, respectively. Additionally, we visualize the inferred results
of several cell images using different location maps, as illustrated in
Fig. 9.

4.4.2. Difference convolution
From Eq. (9), it is evident that the advantage of difference con-

volution lies in its gradient information. When the hyperparameter
𝜃 in Eq. (9) is set to 0, the difference convolution reduces to the
conventional vanilla convolution, resulting in the loss of relative gra-
dient information. Hence, we conducted ablation experiments on the



Engineering Applications of Artificial Intelligence 132 (2024) 107948B. Li et al.
Fig. 8. The effect of changing 𝐶1 and 𝐶2 on the distribution of EDT map.
Fig. 9. Visual comparison of inferred results based on different location maps for several cell images, where CE indicates count errors.
Fig. 10. Ablation experiments of difference convolution hyperparameters in the MGA module. It is worth noting that when 𝜃 = 0, the difference convolution degenerates into the
conventional vanilla convolution.
hyperparameter 𝜃 to investigate its impact on cell localization and
counting performance across a range from 0 to 1.

In this experiment, we employed the M_HRNet model on the BCData
validation dataset, as illustrated in Fig. 10. The following findings were
obtained: (1) The gradient information plays a significant role in the
model’s localization and counting performance. The hyperparameter 𝜃
directly influences the weight balance between gradient information
and semantic information obtained by the model, thereby directly
10
affecting performance outcomes. (2) Effective utilization of gradient in-
formation greatly enhances cell localization and counting performance.
When the hyperparameter 𝜃 is set to 0, resulting in the degeneration of
the difference convolution to the vanilla convolution, the model’s per-
formance notably declines. (3) The optimal localization and counting
performance of the model is achieved with hyperparameters 𝜃 = 0.8
and 𝜃 = 0.5. It is worth noting that setting the hyperparameter 𝜃 = 0
can lead to training instability. The primary reason for this lies in
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the near elimination of semantic information, making it challenging for
the model to capture feature distributions. Therefore, we recommend
avoiding the setting of 𝜃 = 0 whenever possible.

5. Conclusion and outlook

Cell localization plays a crucial role in medical image analysis.
This paper presents a substantial advancement in the field of cell
localization, introducing several key innovations. Firstly, we propose
an exponential distance transform map that accurately determines the
location of cells, while maintaining a reasonable gradient. Additionally,
we develop a corresponding cell center localization strategy that pro-
vides precise information regarding the final location and number of
cells. Moreover, we introduce a novel multi-scale gradient aggregation
module based on difference convolution, which enhances the model’s
ability to handle color variations. Extensive experimental evaluations
demonstrate the remarkable performance improvement of our method
in cell localization and counting tasks, establishing a new benchmark
in the field.

Our future research will focus on advancing the cell localization
task using the EDT map as a foundation. Our observations indicate
that the ground truth representation of cells within the EDT map
showcases a consistent distribution in all directions, with the cell center
as the central point. Based on this finding, we propose to reframe the
cell localization task as a feature alignment problem. Specifically, our
objective is to align the complex and diverse cell distributions observed
in pathological images with the uniformly distributed hillsides. This
strategic approach allows us to leverage the concept of feature align-
ment to effectively address the inherent challenges. Consequently, our
forthcoming investigations will focus on conducting a comprehensive
exploration of this feature alignment methodology.
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